Skip to Main Content


Cyanosis is the most common manifestation of symptomatic heart disease in the newborn infant. Moreover, cyanosis in the absence of significant respiratory distress is almost always caused by structural cardiovascular disease because pulmonary disease severe enough to cause cyanosis is usually associated with severe respiratory distress. Congenital heart defects that cause primarily cyanosis in newborn infants are reviewed in this chapter. Infants who have decreased systemic perfusion as the primary symptom, even if cyanosis is also present, are discussed in Chapter 8.


Oxygen Delivery


Adequate oxygen delivery to meet metabolic needs is essential for healthy survival. The amount of oxygen delivered to the tissues is dependent on systemic blood flow, hemoglobin concentration, and hemoglobin oxygen saturation (Table 6-1). At birth, oxygen consumption increases nearly threefold to meet the energy costs of breathing and thermoregulation. Normally, systemic blood flow at least doubles and systemic arterial oxygen saturation and content increase by about 25% in the immediate newborn period (reviewed in Chapter 3). Thus, despite the increase in oxygen consumption, oxygen delivery increases similarly and the reserve to extract oxygen remains large in normal infants. In contrast, newborn infants with cyanotic congenital heart disease cannot increase systemic arterial oxygen saturation and, in fact, oxygen saturation often falls precipitously soon after birth. These infants are therefore at risk for inadequate systemic oxygen delivery, which, if untreated, may result in anaerobic metabolism, metabolic acidosis, and death.

Table Graphic Jump Location
Table 6-1. Calculation of Oxygen Delivery and Blood Flows

Hemodynamic Categories of Cyanotic Heart Disease


Decreased pulmonary blood flow (Table 6-2) and malposition of the aorta over the systemic venous ventricle (transposition complexes) are the two main pathophysiological mechanisms responsible for severely decreased systemic arterial saturation in newborn infants with cyanotic heart disease. In the normal circulation, all of the poorly saturated systemic venous blood is directed through the right heart structures to the pulmonary arteries; the oxygen saturations of the blood in the systemic veins and pulmonary arteries are therefore equal. This blood becomes nearly fully saturated as it gains oxygen in the pulmonary capillary bed and returns to the heart via the pulmonary ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessPediatrics Full Site: One-Year Subscription

Connect to the full suite of AccessPediatrics content and resources including 20+ textbooks such as Rudolph’s Pediatrics and The Pediatric Practice series, high-quality procedural videos, images, and animations, interactive board review, an integrated pediatric drug database, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessPediatrics

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.