Skip to Main Content


Neonatal hyperbilirubinemia and resultant jaundice are common,1,2 affecting up to ˜80% of newborns.1 Although generally a benign postnatal transitional phenomenon, a select number of infants develop more significant and potentially hazardous levels of total serum bilirubin (TSB) (Table 1-1)3,4 that may pose a direct threat of brain damage.3,5,6 Numerous factors contribute to the development of hyperbilirubinemia including genes involved in: (i) the production of bilirubin from heme; (ii) the metabolism of bilirubin; and (iii) heritable conditions that may reduce red blood cell (RBC) life span and predispose to hemolysis, thereby increasing the bilirubin load717 in neonates. The genetics of neonatal hyperbilirubinemia is the focus of this chapter.

Table Graphic Jump Location
Table 1-1. Estimated Occurrence of Neonatal Hyperbilirubinemia Severity 

In contrast to fully penetrant genetically dominant conditions or those that are mainly environmentally derived, severe neonatal hyperbilirubinemia (TSB >20 mg/dL [342 μmol/L])3,4 is frequently manifested as a pediatric complex trait or disorder. The term complex in this context infers the condition is: (i) prevalent (>1% of neonates);3,4 (ii) multifactorial;16,17 and (iii) polygenic16,17 (Figure 1-1).18 In fact, severe neonatal hyperbilirubinemia is often marked by: (1) etiologic heterogeneity; (2) key environmental influences; and/or (3) the interaction of multiple gene loci, which individually show relatively limited effects, but with each other and nongenetic factors717,19—a contributing role to hyperbilirubinemia risk.

Figure 1-1.
Graphic Jump Location

The relationship between genetic load and environment in the development of disease is shown in this schema.18 An etiologic continuum from strictly genetic, through polygenic–multifactorial, to largely environmental is observed. Severe neonatal hyperbilirubinemia is characteristically a polygenic–multifactorial trait. (Reproduced from Bomprezzi R, Kovanen PE, Martin R. New approaches to investigating heterogeneity in complex traits. J Med Genet. 2003;40:553–559, with permission from BMJ Publishing Group Ltd.)


Characterizing the genetics underlying complex traits is fraught with challenges.18 Several lines of epidemiologic evidence,20 however, support the assertion that genetic contributors are clinically relevant modulators of neonatal hyperbilirubinemia. These include: (i) the clinical significance of a positive family history; (ii) twin studies; (iii) the impact of genetic heritage on hyperbilirubinemia risk; and (iv) male/female differences. This information will be briefly reviewed before an analysis of known icterogenic and candidate ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessPediatrics Full Site: One-Year Subscription

Connect to the full suite of AccessPediatrics content and resources including 20+ textbooks such as Rudolph’s Pediatrics and The Pediatric Practice series, high-quality procedural videos, images, and animations, interactive board review, an integrated pediatric drug database, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessPediatrics

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.