+++
ETIOLOGY/PATHOPHYSIOLOGY
++
Classical phenylketonuria (PKU) is an autosomal recessive disorder of phenylalanine metabolism. It results in severe mental retardation and additional neurological problems when treatment does not begin within the first few weeks of life. However, when a very strict diet is begun early and carefully maintained, affected children can be expected to show normal development and experience a normal life span. The worldwide overall incidence is approximately 1:10,000 with a large national/ethnic variability (1:20,000 live births in South America, 1:4500 in Ireland, 1:2600 in Turkey, 1:11,000 in China, and 1:200,000 in Finland).1 In Europe, the estimated prevalence in the general population is 1:8500.2 Because of the severity of the disease if untreated and the excellent outcome when children are treated early and well, newborn screening for PKU has been instituted in many countries.
++
PKU is caused by a defect in a single enzyme, phenylalanine hydroxylase, that converts the essential amino acid phenylalanine into tyrosine (a non-essential amino acid which becomes essential in PKU) (Figure 15-1). At physiological concentrations 75% to 90% of phenylalanine intake is hydroxylated to tyrosine and about 10% to 25% is used for protein synthesis.1,3,4,5 The failure of this conversion results in an increase of phenylalanine in the blood and in bodily tissues, notably the brain. Through a mechanism that is not well understood, excess of brain phenylalanine is neurotoxic.
++++
Normal phenylalanine metabolism is regulated by the apoenzyme phenylalanine hydroxylase (PAH; EC1.14.16.1) in association with its cofactor tetrahydrobiopterin (BH4). The gene coding for PAH is located on the long arm of chromosome 12. The enzyme is primarily expressed in liver, and the amount of enzyme protein expressed is regulated by ...