1. Casanova JL, Abel L. Human genetics of infectious
diseases: a unified theory. EMBO J. 2007;26(4):915-922.
2. Roach JC, et al. The evolution of vertebrate Toll-like receptors. Proc
Natl Acad Sci U S A. 2005;102(27):9577-9582.
3. Belshaw R, et al. Genomewide screening reveals high levels
of insertional polymorphism in the human endogenous retrovirus family
HERV-K(HML2): implications for present-day activity. J Virol.
2005;9(19):12507-12514.
4. Sumpter R Jr, et al. Regulating intracellular antiviral defense
and permissiveness to hepatitis C virus RNA replication through
a cellular RNA helicase, RIG-I. J Virol. 2005;79(5):2689-2699.
5. Talloczy Z, et al. Regulation of starvation- and virus-induced
autophagy by the eIF2alpha kinase signaling pathway. Proc
Natl Acad Sci U S A. 2002;99(1):190-195.
6. Harris RS, Liddament MT. Retroviral restriction by APOBEC
proteins. Nat Rev Immunol. 2004;4(11):868-877.
7. Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral
restriction and antiviral defence. Nat Rev Microbiol.
2005;3(10):799-808.
8. Ahmed R, Jamieson BD, Porter DD. Immune therapy of a persistent
and disseminated viral infection. J Virol. 1987;61(12):3920-3929.
9. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses
in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68(2):362-372.
10. Choi EH, et al. A common haplotype of interleukin-4 gene
IL4 is associated with severe respiratory syncytial virus disease
in Korean children. J Infect Dis. 2002;186(9):1207-1211.
11. Hoebee B, et al. Association of severe respiratory syncytial
virus bronchiolitis with interleukin-4 and interleukin-4 receptor
alpha polymorphisms. J Infect Dis. 2003;187(1):2-11.
12. Hoebee B, et al. Influence of promoter variants of interleukin-10,
interleukin-9, and tumor necrosis factor-alpha genes on respiratory
syncytial virus bronchiolitis. J Infect Dis. 2004;189(2):239-247.
13. Wilson J, et al. Genetic variation at the IL10 gene locus
is associated with severity of respiratory syncytial virus bronchiolitis. J
Infect Dis. 2005;191(10):1705-1709.
14. Hull J, et al. Unusual haplotypic structure of IL8, a susceptibility
locus for a common respiratory virus. Am J Hum Genet.
2001;69(2):413-419.
15. Hull J, et al. Haplotype mapping of the bronchiolitis susceptibility
locus near IL8. Hum Genet. 2004;114(3):272-279.
16. Hull J, et al. Variants of the chemokine receptor CCR5 are
associated with severe bronchiolitis caused by respiratory syncytial
virus. J Infect Dis. 2003;188(6):904-907.
17. Lahti M, et al. Surfactant protein D gene polymorphism associated
with severe respiratory syncytial virus infection. Pediatr
Res. 2002;51 (6):696-699.
18. Lofgren J, et al. Association between surfactant protein
A gene locus and severe respiratory syncytial virus infection in
infants. J Infect Dis. 2002;185(3):283-289.
19. Ehlenfield DR, Cameron K, Welliver RC. Eosinophilia at the
time of respiratory syncytial virus bronchiolitis predicts childhood
reactive airway disease. Pediatrics. 2000;105(1
pt 1):79-83.
20. Porotto M, et al. Triggering of human parainfluenza virus
3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein:
an HN mutation diminishes the rate of F activation and fusion. J
Virol. 2003;77(6):3647-3654.
21. Hernandez LD, et al. Virus-cell and cell-cell fusion.
Annu
Rev Cell Dev Biol. 1996;12:627-661.
[PubMed: 8970739]
22. Moscona A, Peluso RW. Fusion properties of cells persistently
infected with human parainfluenza virus type 3: participation of
hemagglutinin-neuraminidase in membrane fusion.
J Virol.
1991;65:2773-2777.
[PubMed: 1851852]
23. Moscona A, Peluso RW. Relative affinity of the human parainfluenza
virus type 3 hemagglutinin-neuraminidase for sialic acid correlates with
virus-induced fusion activity. J Virol. 1993;67(11):6463-6468.
24. Porotto M, et al. Paramyxovirus receptor-binding molecules:
engagement of one site on the hemagglutinin-neuraminidase protein
modulates activity at the second site.
J Virol.
2006; 80(3):1204-1213.
[PubMed: 16414997]
25. Porotto M, et al. A second receptor binding site on human
parainfluenza virus type 3 hemagglutinin-neuraminidase contributes
to activation of the fusion mechanism. J Virol.
2007;81 (7):3216-3228.
26. Porotto M, et al. Influence of the human parainfluenza virus
3 attachment protein’s neuraminidase activity on its capacity
to activate the fusion protein. J Virol. 2005;79(4):
2383-2392.
27. Palermo LM, et al. Fusion promotion by a paramyxovirus hemagglutinin-neuraminidase protein:
pH modulation of receptor avidity of binding sites I and II. J
Virol. 2007;81(17):9152-9161.
28. Huberman K, Peluso R, Moscona A. The hemagglutinin-neuraminidase
of human parainfluenza virus type 3: Role of the neuraminidase in
the viral life cycle.
Virology. 1995;214:294-300.
[PubMed: 8525632]
29. Porotto M, et al. Human parainfluenza virus type 3 HN-receptor
interaction: effect of 4-guanidino-Neu5Ac2en on a neuraminidase-deficient
variant. J Virol. 2001:175(16):7481-7488.
30. Horvath CM. Weapons of STAT destruction: interferon evasion
by paramyxovirus V protein. Eur J Biochem. 2004;271(23-24):4621-4628.
31. Ali A, Nayak DP. Assembly of Sendai virus: M protein interacts
with F and HN proteins and with the cytoplasmic tail and transmembrane domain
of F protein. Virology. 2000;276(2):289-303.
32. Coronel EC, et al. Human parainfluenza virus type 1 matrix
and nucleoprotein genes transiently expressed in mammalian cells
induce the release of virus-like particles containing nucleocapsid-like
structures. J Virol. 1999;73(8):7035-7038.
33. Coronel EC, et al. Nucleocapsid incorporation into parainfluenza
virus is regulated by specific interaction with matrix protein. J
Virol. 2001;75 (3):1117-1123.
34. Mottet G, et al. A Sendai virus vector leading to the efficient
expression of mutant M proteins interfering with virus particle
budding. Virology. 1996;221(1):159-171.
35. Mottet G, Muller V, Roux L. Characterization of Sendai virus
M protein mutants that can partially interfere with virus particle
production. J Gen Virol. 1999;80(pt 11):2977-2986.
36. Takimoto T, et al. Role of matrix and fusion proteins in
budding of Sendai virus. J Virol. 2001;75(23):11384-11391.
37. Katze MG, He Y, Gale M Jr. Viruses and interferon: a fight
for supremacy. Nat Rev Immunol. 2002;2(9):675-687.
38. Giorgi C, Blumberg BM, Kolakofsky D. Sendai virus contains
overlapping genes expressed from a single mRNA. Cell.
1983;35(3 pt 2):829-836.
39. Garcin D, et al. The amino-terminal extensions of the longer
Sendai virus C proteins modulate pY701-Stat1 and bulk Stat1 levels
independently of interferon signaling. J Virol.
2003;77(4):2321-2329.
40. Lamb RA, Kolakofsky D. Paramyxoviridae: the
viruses and their replication. In: Knipe DM, Howley PM, Griffin
DE, et al, eds. Fields Virology. Philadelphia:
Lippincott Williams & Wilkins; 2001:1305-1340.
41. Paterson RG, et al. The paramyxovirus SV5 V protein binds
two atoms of zinc and is a structural component of virions. Virology.
1995;208 (1):121-131.
42. He B, et al. Recovery of paramyxovirus simian virus 5 with
a V protein lacking the conserved cysteine-rich domain: the multifunctional
V protein blocks both interferon-beta induction and interferon signaling. Virology.
2002;303(1):15-32.
43. Wansley EK, Parks GD. Naturally occurring substitutions
in the P/V gene convert the noncytopathic paramyxovirus
simian virus 5 into a virus that induces alpha/beta interferon
synthesis and cell death. J Virol. 2002;76(20):10109-10121.
44. Lin GY, Lamb RA. The paramyxovirus simian virus 5 V protein
slows progression of the cell cycle. J Virol. 2000;74(19):9152-9166.
45. Poole E, et al. The V proteins of simian virus 5 and other
paramyxoviruses inhibit induction of interferon-beta. Virology.
2002;303(1):33-46.
46. Didcock L, et al. The V protein of simian virus 5 inhibits
interferon signalling by targeting STAT1 for proteasome-mediated
degradation. J Virol. 1999;73(12):9928-9933.
47. Andrejeva J, et al. Degradation of STAT1 and STAT2 by the
V proteins of simian virus 5 and human parainfluenza virus type
2, respectively: consequences for virus replication in the presence
of alpha/beta and gamma interferons. J Virol.
2002;76(5):2159-2167.
48. Parisien JP, et al. The V protein of human parainfluenza
virus 2 antagonizes type I interferon responses by destabilizing
signal transducer and activator of transcription 2. Virology. 2001;283(2):230-239.
49. Nishio M, et al. The carboxyl segment of the mumps virus
V protein associates with Stat proteins in vitro via
a tryptophan-rich motif. Virology. 2002;300(1):92-99.
50. Ulane CM, et al. STAT3 ubiquitylation and degradation by
mumps virus suppress cytokine and oncogene signaling. J
Virol. 2003;77(11):6385-6393.
51. Kubota T, et al. Association of mumps virus V protein with
RACK1 results in dissociation of STAT-1 from the alpha interferon
receptor complex. J Virol. 2002;76(24):12676-12682.
52. Pastey MK, Crowe JE, Graham BS. RhoA interacts with the
fusion glycoprotein of respiratory syncytial virus and facilitates
virus-induced syncytium formation.
J Virol. 1999;73:7262-7270.
[PubMed: 10438814]
53. Pastey MK, et al. A RhoA-derived peptide inhibits syncytium
formation induced by respiratory syncytial virus and parainfluenza
virus type 3. Nat Med. 2000;6(1):35-40.
54. Bose S, Malur A, Banerjee AK. Polarity of human parainfluenza
virus type 3 infection in polarized human lung epithelial A549 cells: role
of microfilament and microtubule. J Virol. 2001;75(4):1984-1989.
55. De BP, Banerjee AK. Involvement of actin microfilaments
in the transcription/replication of human parainfluenza
virus type 3: possible role of actin in other viruses. Microsc
Res Tech. 1999:47(2):114-123.
56. Gupta S, et al. Involvement of actin microfilaments in the
replication of human parainfluenza virus type 3. J Virol.
1998;72(4):2655-2662.
57. Tashiro M, et al. Possible involvement of microtubule disruption
in bipolar budding of a Sendai virus mutant, F1-R, in epithelial
MDCK cells. J Virol. 1993;67(10):5902-5910.
58. Welliver RC. Immunology of respiratory syncytial virus infection:
eosinophils, cytokines, chemokines and asthma. Pediatr Infect
Dis J. 2000;19(8):780-783; discussion 784-785, 811-813.
59. Anderson LJ, Heilman CA. Protective and disease-enhancing
immune responses to respiratory syncytial virus. J Infect
Dis. 1995;171(1):1-7.
60. Falsey AR, Walsh EE. Relationship of serum antibody to risk
of respiratory syncytial virus infection in elderly adults. J
Infect Dis. 1998;177(2):463-466.
61. van Schaik SM, et al. Role of interferon gamma in the pathogenesis
of primary respiratory syncytial virus infection in BALB/c
mice. J Med Virol. 2000;62(2):257-266.
62. van Schaik SM, Welliver RC, Kimpen JL. Novel pathways in
the pathogenesis of respiratory syncytial virus disease. Pediatr
Pulmonol. 2000;30 (2):131-138.
63. Srikiatkhachorn A, Braciale TJ. Virus-specific memory and
effector T lymphocytes exhibit different cytokine responses to antigens
during experimental murine respiratory syncytial virus infection. J
Virol. 1997;71(1):678-685.
64. Haeberle HA, et al. Respiratory syncytial virus-induced
activation of nuclear factor-kappaB in the lung involves alveolar
macrophages and Toll-like receptor 4-dependent pathways. J Infect
Dis. 2002;186(9):1199-1206.
65. Haynes LM, et al. Involvement of Toll-like receptor 4 in
innate immunity to respiratory syncytial virus. J Virol.
2001;75(22):10730-10737.
66. Kurt-Jones EA, et al. Pattern recognition receptors TLR4
and CD14 mediate response to respiratory syncytial virus. Nat
Immunol. 2000;1(5): 398-401.
67. Scott R, et al. Development of in vitro correlates
of cell-mediated immunity to respiratory syncytial virus infection
in humans. J Infect Dis. 1978;137(6):810-817.
68. Openshaw PJ, Culley FJ, Olszewska W. Immunopathogenesis
of vaccine-enhanced RSV disease. Vaccine. 2001;20(suppl
1):S27-S31.
69. Welliver RC, et al. Defective regulation of immune responses
in respiratory syncytial virus infection. J Immunol.
1984;133(4):1925-1930.
70. Collins PL, Chanock RM, Mcintosh K. Parainfluenza viruses.
In: Fields BN, Knipe DM, PM Howley, eds. Fields Virology.
New York: Lippincott-Raven Press; 1996:1205-1242.
71. Smith CB, et al. Protective effect of antibody to parainfluenza
type 1 virus. N Engl J Med. 1966;275(21):1145-1152.
72. Tremonti LP, Lin JS, Jackson GG. Neutralizing activity in
nasal secretions and serum in resistance of volunteers to parainfluenza
virus type 2. J Immunol. 1968;101(3):572-577.
73. Wendt CH, et al. Parainfluenza virus respiratory infection
after bone marrow transplantation. N Engl J Med.
1992;326(14):921-926.
74. Ku CC, et al. Varicella-zoster virus pathogenesis and immunobiology:
new concepts emerging from investigations with the SCIDhu mouse model.
J Virol. 2005;79(5):2651-2658.
75. Abendroth A, Arvin A. Varicella-zoster virus immune evasion.
Immunol
Rev. 1999;168:143-156.
[PubMed: 10399071]
76. Abendroth A, Arvin AM. Immune evasion as a pathogenic mechanism
of varicella zoster virus. Semin Immunol. 2001;13(1):27-39.
77. Gershon A, Takahashi M, Seward J. Varicella vaccine. In:
Plotkin S, Orenstein W, Offit P, eds. Vaccines.
Philadelphia: Saunders; 2008:915-958.
78. Gershon A, Chen J, Gershon MD. A model of lytic, latent,
and reactivating varicella-zoster virus infections in isolated enteric
neurons. J Infect Dis. 2008;197(suppl 2):S61-S65.
79. Li Q, Ali MA, Cohen JI. Insulin degrading enzyme is a cellular
receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell.
2006;127(2):305-316.
80. Li Q, et al. The amino terminus of varicella-zoster virus
(VZV) Glycoprotein E is required for binding to insulin-degrading
enzyme, a VZV receptor. J Virol. 2007;81(16):8525-8532.
81. Hambleton S, et al. Cholesterol dependence of varicella-zoster
virion entry into target cells. J Virol. 2007;81(14):7548-7558.
82. Gershon AA, et al. Intracellular transport of newly synthesized
varicella-zoster virus: final envelopment in the trans-Golgi network. J Virol.
1994;68(10):6372-6390.
83. Gabel C, et al. Varicella-zoster virus glycoproteins are
phosphorylated during posttranslational maturation.
J Virol.
1989;63:4264-4276.
[PubMed: 2550667]
84. Chen JJ, et al. Mannose 6-phosphate receptor dependence
of varicella zoster virus infection in vitro and in the epidermis
during varicella and zoster. Cell. 2004;119(7):915-926.
85. Arvin AM. Varicella-zoster virus: pathogenesis, immunity,
and clinical management in hematopoietic cell transplant recipients. Biol Blood
Marrow Transplant. 2000;6(3):219-230.
86. Arvin AM. Varicella-zoster virus: molecular virology and
virus–host interactions. Curr Opin Microbiol.
2001;4(4):442-449.
87. Wang Z-H, et al. Essential role played by the C-terminal
domain of glycoprotein I in envelopment of varicella-zoster virus
in the trans-Golgi network: interactions of glycoproteins with tegument.
J
Virol. 2001;75:323-340.
[PubMed: 11119602]
88. Kennedy PG. Key issues in varicella-zoster virus latency. J
Neurovirol. 2002;8(suppl 2):80-84.
89. Kennedy PGE, Grinfeld E, Bell JE. Varicella-zoster virus
gene expression in latently infected and explanted human ganglia.
J
Virol. 2000;74:11893-11898.
[PubMed: 11090189]
90. Lungu O, et al. Reactivated and latent varicella-zoster
virus in human dorsal root ganglia.
Proc Natl Acad Sci U
S A. 1995;92:10980-10984.
[PubMed: 7479921]
91. Hood C, et al. Varicella-zoster virus ORF63 inhibits apoptosis
of primary human neurons. J Virol. 2006;80(2):1025-1031.
92. Chen J, et al. Latent, lytic, and reactivating infection
of human and guinea pig enteric neurons by varicella zoster virus.
28th Annual Herpesvirus Workshop; 2003; Madison, WI.
93. Cohen JI, et al. Varicella-zoster virus ORF4 latency-associated
protein is important for establishment of latency. J Virol.
2005;79(11): 6969-6975.
94. Cohrs RJ, et al. Varicella-zoster virus gene 66 transcription
and translation in latently infected human ganglia. J Virol.
2003;77(12):6660-6665.
95. Cohrs RJ, Gilden DH. Varicella zoster virus transcription
in latently-infected human ganglia. Anticancer Res.
2003;23(3A):2063-2069.
96. Hay J, Ruyechan WT. Varicella-zoster virus: a different
kind of herpesvirus latency? Semin Virol. 1994;5:241-248.
97. Lungu O, et al. Aberrant intracellular localization of varicella-zoster
virus regulatory proteins during latency.
Proc Natl Acad
Sci U S A. 1998; 95:7080-7085.
[PubMed: 9618542]
98. Mahalingham R, et al. Expression of protein encoded by varicella-zoster
virus open reading frame 63 in latently infected human ganglionic neurons. Proc
Natl Acad Sci U S A. 1996;93: 2122-2124.
99. Oxman MN, et al. A vaccine to prevent herpes zoster and
postherpetic neuralgia in older adults. N Engl J Med.
2005;352(22):2271-2284.
100. Hardy IB, et al. The incidence of zoster after immunization
with live attenuated varicella vaccine: a study in children with
leukemia.
N Engl J Med. 1991;325:1545-1550.
[PubMed: 1658650]
101. Son, M., et al., Vaccination of children with perinatal
HIV infection protects against varicella and zoster. Pediatric Academic
Societies Annual Meeting; 2008; Honolulu, HI.