1. Norgauer J, Idzko M, Panther E, et al. Xeroderma pigmentosum.
Eur
J Dermat. 2003;13:4-9.
[PubMed: 12609773]
2. Smith AC, Choufani S, Ferreira JC, et al. Growth regulation,
imprinted genes and chromosome 11p15.5. Pediatr Res.
2007;61:43R-47R.
3. Mastrangelo D, DeFrancesco S, DiLionardo A, et al. Retinoblastoma
epidemiology: Does the evidence matter?
Eur J Cancer.
2007;43:1596.
[PubMed: 17543516]
4. Varley J. Germline TP53 mutations and Li-Fraumeni syndrome.
Hum
Mutation. 2003;21:313.
[PubMed: 12619118]
5. Durno CA. Colonic polyps in children and adolescents.
Can
J Gastroenterol. 2007;21:233.
[PubMed: 17431512]
6. Huang JS, Huang CJ, Chen SK, et al. Associations between
VHL genotype and clinical phenotype in familial von Hippel-Lindau
disease.
Eur J Clin Invest. 2007;37:492.
[PubMed: 17537157]
7. Gonzalez FF, Lopes MB, Garcia FJM, et al. Expression of developmentally
defined retinal phenotypes in the histogenesis of retinoblastoma. Am
J Patho. 1992;141:363.
8. Devesa SS. The incidence of retinoblastoma.
Am J
Ophthalmol. 1975;80:263.
[PubMed: 1155565]
9. Knudson AG Jr, Hethcote HW, Brown BW. Mutation and childhood
cancer: a probabilistic model for the incidence of retinoblastoma.
Proc
Natl Acad Sci USA. 1975;72:5116.
[PubMed: 1061095]
10. Abramson DH, Ellsworth RM, Kitchin FD, et al. Second nonocular
tumors in retinoblastoma survivors. Are they radiation-induced?
Ophthalmology.
1984;91:1351.
[PubMed: 6595610]
11. Smith LM, Donaldson SS, Egbert PR, et al. Aggressive management
of second primary tumors in survivors of hereditary retinoblastoma.
Int
J Radiat Oncol Biol Phys. 1989;17:499.
[PubMed: 2777644]
12. Francois J, Matton MT, De Bie S, et al. Genesis and genetics
of retinoblastoma.
Ophthalmologica. 1975;170:405.
[PubMed: 1097980]
13. Ellsworth RM. The practical management of retinoblastoma.
Trans
Am Ophthalmol Soc. 1969;67:462.
[PubMed: 5381307]
14. Squire J, Dryja TP, Dunn J, et al. Cloning of the esterase
D gene:
a polymorphic gene probe closely linked to the retinoblastoma locus
on chromosome 13.
Proc Natl Acad Sci USA. 1986;83:6573.
[PubMed: 3462714]
15. Knudson AG, Hethcote HW, Brown BW. Mutation and childhood
cancer. A probabilistic model for the incidence of retinoblastoma.
Proc
Natl Acad Sci USA. 1975;72:5116.
[PubMed: 1061095]
16. Cavenee WK, Dryja TP, Phillips RA, et al. Expression of
recessive alleles by chromosomal mechanisms in retinoblastoma.
Nature.
1983;305:779.
[PubMed: 6633649]
17. Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with
properties of the gene that predisposes to retinoblastoma and osteosarcoma.
Nature.
1986;323:643.
[PubMed: 2877398]
18. Lee WH, Bookstein R, Hong F, et al. Human retinoblastoma
susceptibility gene: cloning, identification and sequence
.
Science. 1987;235:1394.
[PubMed: 3823889]
19. Bookstein R, Shew JY, Chen PL, et al. Suppression of tumorigenicity
of human prostate carcinoma cells by replacing a mutated RB gene.
Science.
1990;247:712.
[PubMed: 2300823]
20. Schubert EL, Strong LC, Hansen MF. A splicing mutation in
RB1 in low penetrance retinoblastoma. Br J Cancer.
1986;53:661.
21. Zacksenhaus E, Jiang Z, Phillips RA, et al. Dual mechanisms
of repression of E2F1 activity by the retinoblastoma gene product.
EMBO
J. 1996;15: 5917.
[PubMed: 8918469]
22. Bremmer R, Du DC, Connolly-Wilson MJ, et al. Deletion of RB
exons 24 and 25 causes low-penetrance retinoblastoma. Am
J Hum Genet. 1997; 61:556.
23. Laurie NA, Donovan SL, Shih CS, et al. Inactivation of the
p53 pathway in retinoblastoma.
Nature. 2006;444:61.
[PubMed: 17080083]
24. Wunderlich M, Ghosh M, Weghorst K, et al. MdmX represses
E2F1 transactivation.
Cell Cycle. 2004;3:472.
[PubMed: 14739777]
25. Marine JC, Dyer MA, Jochesmsen AG. MDMX: from bench to bedside. J
Cell Science. 2006;120:371.
26. Matsunaga E. Hereditary retinoblastoma: penetrance, expressivity
and age of onset.
Hum Genet. 1976;33:1.
[PubMed: 939555]
27. Sanchez-Sanchez F, Ramirez-Castillejo C, Weekes DB, et al.
Attenuation of disease phenotype through alternative translation
initiation in low-penetrance retinoblastoma.
Human Mut.
2007;28:159.
[PubMed: 16988938]
28. Jiang Z, Zacksenhaus E, Gallie BL, et al. The retinoblastoma
gene family is differentially expressed during embryogenesis.
Oncogene.
1997;14:1789.
[PubMed: 9150384]
29. Lee EY, Chang CY, Hu N, et al. Mice deficient for Rb are
nonviable and show defects in neurogenesis and haematopoiesis.
Nature.
1992;359:288.
[PubMed: 1406932]
30. Richter S, Vandezande K, Chen N, et al. Sensitive and efficient
detection of RB1 gene mutations enhances care for families with
retinoblastoma.
Am J Hum Genet. 2003;72:253.
[PubMed: 12541220]
31. Cohen JG, Dryja TP, Davis KB, et al. RB1 genetic testing
as a clinical service: a follow-up study.
Med Pediatr Oncol.
2001;37:372.
[PubMed: 11568901]
32. Ries LAG, Miller BA, Hankey BF, et al. SEER Cancer Statistics Review,
1973–1991: tables and graphs. Publication No. 94-2789. Bethesda,
MD: National Institutes of Health, 1994.
33. Montgomery BT, Kelalis PP, Blute ML, et al. Extended followup
of bilateral Wilms tumor: results of the National Wilms Tumor Study.
J
Urol. 1991;146:514.
[PubMed: 1650403]
34. National Wilms Tumor Study Committee: Wilms tumor: status report,
1990. J Clin Oncol. 1991;9: 877.
35. D’Angio GJ, Breslow N, Beckwith JB, et al. Treatment
of Wilms tumor. Results of the Third National Wilms Tumor Study.
Cancer.
1989;64:349.
[PubMed: 2544249]
36. Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis,
and the pathogenesis of Wilms tumor.
Pediatr Pathol.
1990;10:1.
[PubMed: 2156243]
37. Mueller RF. The Denys-Drash syndrome.
J Med Genet.
1994;31:471.
[PubMed: 8071974]
38. Sotelo-Avila C, Gonzalez-Crussi F, Fowler JW. Complete and
incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic
potential.
J Pediatr. 1980;96:47.
[PubMed: 7350313]
39. Riccardi VM, Sujansky E, Smith AC, et al. Chromosomal imbalance
in the Aniridia-Wilms tumor association: 11p interstitial deletion.
Pediatrics. 1978;61:604.
[PubMed: 208044]
40. Ton CC, Hirvonen H, Miwa H, et al. Positional cloning and
characterization of a paired box- and homeobox-containing gene from the
aniridia region.
Cell. 1991;67:1059.
[PubMed: 1684738]
41. Call KM, Glaser T, Ito CY, et al. Isolation and characterization of
a zinc finger polypeptide gene at the human chromosome 11 Wilms
tumor locus.
Cell. 1990;60:509.
[PubMed: 2154335]
42. Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion
in Wilms tumours of a zinc-finger gene identified by chromosome
jumping
. Nature. 1990;343:774.
[PubMed: 2154702]
43. Bonetta L, Kuehn SE, Huang A, et al. Wilms tumor locus on
11p13 defined by multiple CpG island-associated transcripts.
Science.
1990;250:994.
[PubMed: 2173146]
44. Rauscher FJ III. The WT1 Wilms tumor gene product: a developmentally
regulated transcription factor in the kidney that functions as a
tumor suppressor.
Faseb J. 1993;7:896.
[PubMed: 8393820]
45. Little M, Holmes G, Walsh P. WT1: What has the last decade told
us?
Bioessays. 1999;21:191.
[PubMed: 10333728]
46. Drash A, Sherman F, Hartmann WH, et al. A syndrome of pseudohermaphroditism,
Wilms tumor, hypertension, and degenerative renal disease.
J
Pediatr. 1970;76:585.
[PubMed: 4316066]
47. Jadresic L, Leake J, Gordon I, et al. Clinicopathologic
review of twelve children with nephropathy, Wilms tumor, and genital
abnormalities (Drash syndrome).
J Pediatr. 1990;117:717.
[PubMed: 2172500]
48. Coppes MJ, Liefers GJ, Higuchi M, et al. Inherited WT1 mutation
in Denys-Drash syndrome.
Cancer Res. 1992;52:6125.
[PubMed: 1327525]
49. Koufos A, Grundy P, Morgan K, et al. Familial Wiedemann-Beckwith
syndrome and a second Wilms tumor locus both map to 11p15.5.
Am
J Hum Genet. 1989;44:711.
[PubMed: 2539717]
50. Ping AJ, Reeve AE, Law DJ, et al. Genetic linkage of Beckwith-Wiedemann
syndrome to 11p15.
Am J Hum Genet. 1989;44:720.
[PubMed: 2565083]
51. Matsuoka S, Edwards MC, Bai C, et al. p57KIP2, a structurally distinct
member of the p21CIP1 Cdk inhibitor family, is a candidate tumor
suppressor gene.
Genes Dev. 1995;9:650.
[PubMed: 7729684]
52. Hartmann W, Waha A, Koch A, et al. p57(KIP2) is not mutated in
hepatoblastoma but shows increased transcriptional activity in a comparative
analysis of the three imprinted genes p57(KIP2), IGF2, and H19.
Am
J Pathol. 2000;157:1393.
[PubMed: 11021841]
53. Rivera MN, Kim WJ, Driscoll DR, et al. An X chromosome gene, WTX,
is commonly inactivated in Wilms tumor.
Science.
2007;315: 642.
[PubMed: 17204608]
54. Huff V. Wilms tumor genetics: a new, UnX-pected twist to
the story.
Cancer Cell. 2007;11:105.
[PubMed: 17292822]
55. Maw MA, Grundy PE, Millow LJ, et al. A third Wilms tumor
locus on chromosome 16q.
Cancer Res. 1992;52:3094.
[PubMed: 1317258]
56. Huff V, Reeve AE, Leppert M, et al. Nonlinkage of 16q markers to
familial predisposition to Wilms tumor.
Cancer Res.
1992;52:6117.
[PubMed: 1356625]
57. Brodeur GM, Castleberry RP. Neuroblastoma. In: Pizzo PA, Poplack
DG, eds. Principles and Practice of Pediatric Oncology.
3d ed. Philadelphia: JB Lippincott; 1997:761.
58. Cohen PS, Cooper MJ, Helman LJ, et al. Neuropeptide Y expression
in the developing adrenal gland and in childhood neuroblastoma tumors.
Cancer
Res. 1990;50:6055.
[PubMed: 2393870]
59. Brodeur GM, Sekhon G, Goldstein MN. Chromosomal aberrations
in human neuroblastomas.
Cancer. 1977;40:2256.
[PubMed: 922665]
60. Maris JM, White PS, Beltinger CP, et al. Significance of
chromosome 1p loss of heterozygosity in neuroblastoma.
Cancer
Res. 1995;55:4664.
[PubMed: 7553646]
61. Caron H, van Sluis P, de Kraker J, et al. Allelic loss of
chromosome 1p as a predictor of unfavorable outcome in patients with
neuroblastoma.
N Engl J Med. 1996;334:225.
[PubMed: 8531999]
62. Lau L, Hansford LM, Cheng LS, et al. Cyclooxygenase inhibitors
modulate the p53/HMDM2 pathway and enhance chemotherapy-induced
apoptosis in neuroblastoma.
Oncogene. 2007;26:
1920.
[PubMed: 16983334]
63. Irwin MS, Kaelin WG. p53 family update: p73 and p63 develop
their own identities.
Cell Growth Differ. 2001;12:337.
[PubMed: 11457731]
64. Melino G, De Laurenzi V, Vousden KH. Friend or foe in tumorigenesis.
Nat
Rev Cancer. 2002;2:605.
[PubMed: 12154353]
65. Caciano I, Mazzoco K, Boni L, et al. Expression of DeltaNp73
is a molecular marker for adverse outcome in neuroblastoma patients. Cell
Death Differ. 2002;9:246.
66. Douc-Rasy S, Barrois M, Echeynne M, et al. DeltaN- p73alpha
accumulates in human neuroblastic tumors. Am J Pathol.
2002;160:131.
67. Biedler JL, Ross R, Sharske S, et al. Human neuroblastoma
cytogenetics: search for significance of homogeneously staining
regions in double minute chromosomes. In: Evans AE, ed. Advances
in Neuroblastoma Research. New York: Raven; 1980.
68. Biedler JL, Spengler BA. A novel chromosome abnormality
in human neuroblastoma and antifolate-resistant Chinese hamster cell
lives in culture.
J Natl Cancer Inst. 1976;57:683.
[PubMed: 62055]
69. Schwab M, Alitalo K, Klempnauer KH, et al. Amplified DNA with
limited homology to myc cellular oncogene is shared by human neuroblastoma
cell lines and a neuroblastoma tumour.
Nature.
1983;305:245.
[PubMed: 6888561]
70. Schwab M, Ellison J, Busch M, et al. Enhanced expression
of the human gene N-myc consequent to amplification of DNA may contribute
to malignant progression of neuroblastoma.
Proc Natl Acad
Sci USA. 1984;81:4940.
[PubMed: 6589638]
71. Thiele CJ, Reynolds CP, Israel MA. Decreased expression
of N-myc precedes retinoic acid-induced morphological differentiation
of human neuroblastoma.
Nature. 1985;313:404.
[PubMed: 3855502]
72. Matthay KK, Villablanca JG, Seeger RC, et al. Treatment
of high-risk neuroblastoma with intensive chemotherapy, radiotherapy,
autologous bone marrow transplantation, and 13-cis- retinoic acid.
Children’s Cancer Group.
N Engl J Med.
1999;341:1165.
[PubMed: 10519894]
73. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, et al. Association
between high levels of expression of the TRK gene and favorable
outcome in human neuroblastoma.
N Engl J Med. 1993;328:847.
[PubMed: 8441429]
74. Ho R, Eggert A, Hishiki T, et al. Resistance to chemotherapy mediated
by TrkB in neuroblastomas.
Cancer Res. 2002;62:6462.
[PubMed: 12438236]
75. Jaboin J, Kim CJ, Kaplan DR, et al. Brain-derived neurotrophic factor
activation of TrkB protects neuroblastoma cells from chemotherapy-induced
apoptosis via phosphatidylinositol 3'-kinase pathway.
Cancer
Res. 2002;62:6756.
[PubMed: 12438277]
76. Norris MD, Bordow SB, Marshall GM, et al. Expression of
the gene for multidrug-resistance-associated protein and outcome
in patients with neuroblastoma.
N Engl J Med. 1996;334:231.
[PubMed: 8532000]
77. Bown N, Cotterill S, Lastowska M, et al. Gain of chromosome arm
17q and adverse outcome in patients with neuroblastoma.
N
Engl J Med. 1999;340:1954.
[PubMed: 10379019]
78. Attiyeh EF, London WB, Mosse YP, et al. Chromosome 1p and
11q deletions and outcome in neuroblastoma.
N Engl J Med.
2005;353:2243.
[PubMed: 16306521]
79. Spitz R, Hero B, Simon T, et al. Loss in chromosome 11q
identifies tumors with increased risk for neuroblastoma relapses
in localized and 4S neuroblastoma.
Clin Cancer Res.
2006;12:3368.
[PubMed: 16740759]
80. Binz N, Shalaby T, Rivera P, et al. Telomerase inhibition,
telomere shortening, cell growth suppression and induction of apoptosis
by telomestatin in childhood neuroblastoma cells.
Eur J
Cancer. 2005;41:2873.
[PubMed: 16253503]
81. Ohali A, Avigad S, Ash S, et al. Telomere length is a prognostic factor
in neuroblastoma.
Cancer. 2006;107:1391.
[PubMed: 16917952]
82. Evans A, D’Angio G, Randolph J. A proposed staging
system for children with neuroblastoma.
Cancer.
1971;27:374.
[PubMed: 5100400]
83. Van Noesel MM, Hahlen K, Hakvoort-Cammel FG, et al. Neuroblastoma
4S: a heterogeneous disease with variable risk factors and treatment
strategies. Cancer. 1997;80:834.
84. Flandin I, Hartmann O, Michon J, et al. Impact of TBI on
late effects in children treated by megatherapy for stage IV neuroblastoma.
A study of the French Society of Pediatric Oncology.
Int
J Radiation Oncol Biol Phys. 2006;64:1424.
[PubMed: 16427213]
85. Matthay K, Edeline V, Lumbroso J, et al. Correlation of
early metastatic response by 123I-metaiodobenzylguanidine scintigraphy
with overall response and event-free survival in stage IV neuroblastoma.
J
Clin Oncol. 2003;21:2486.
[PubMed: 12829667]
86. Potluri VR, Gilbert F, Helsen C, et al. Primitive neuroectodermal
tumor cell lines: chromosomal analysis of five cases.
Cancer
Genet Cytogenet. 1987;24:75.
[PubMed: 3024811]
87. Whang PJ, Triche TJ, Knutsen T, et al. Chromosome translocation
in peripheral neuroepithelioma. N Engl J Med. 1988;412:421.
88. Whang PJ, Triche TJ, Knutsen T, et al. Cytogenetic characterization
of selected small round cell tumors of childhood. Cancer
Genet Cytogenet. 1986;21:185.
89. Delattre O, Zucman J, Ploustagel B, et al. Gene fusion with
an ETS DNA binding domain caused by chromosome translocation in human
cancers.
Nature. 1992;359:162.
[PubMed: 1522903]
90. Zucman J, Delattre O, Desmaze C, et al. Cloning and characterization
of the Ewing’s sarcoma and peripheral neuroepithelioma
t(11;22) translocation breakpoints.
Genes Chromosomes Cancer.
1992;5:271.
[PubMed: 1283315]
91. May WA, Gishizky ML, Lessnick SL, et al. Ewing sarcoma 11;22
translocation produces a chimeric transcription factor that requires
the DNA-binding domain encoded by FLI1 for transformation.
Proc
Natl Acad Sci USA. 1993;90:5752.
[PubMed: 8516324]
92. Toretsky JA, Kalebic T, Blakesley V et al. The insulin-like
growth factor-1 receptor is required for EWB/FLI-1 transformation
of fibroblasts. J Biol Chem 1997:272;30822.
93. Karnieli E, Werner H, Rauscher FJ Jr, et al. The IGF-1 receptor
gene promoter is a molecular target for the Ewing sarcoma-Wilms
tumor 1 fusion protein. J Biol Chem. 1997;271:19,304.
94. Lessnick SL, Dacwag CS, Golub TR. The Ewing’s sarcoma
oncoprotein EWS/FLI induces a p53-dependent growth arrest
in primary human fibroblasts.
Cancer Cell. 2002;1:393.
[PubMed: 12086853]
95. Deneen B, Denny CT. Loss of p16 pathways stabilizes EWS/FLI1
expression and complements EWS/FLI1 mediated transformation.
Oncogene.
2001;20:6731.
[PubMed: 11709708]
96. Smith R, Owen LA, et al. Expression profiling of EWS/FLI
identifies NKX2.2 as a critical target gene in Ewing sarcoma.
Cancer
Cell. 2006;9:405.
[PubMed: 16697960]
97. Sorensen PH, Lessnick SL, Lopez-Terrada D, et al. A second
Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene
to another ETS-family transcription factor, ERG.
Nat Genet.
1994;6:146.
[PubMed: 8162068]
98. Jeon IS, Davis JN, Braun BS, et al. A variant Ewing’s
sarcoma translocation (7;22) fuses the EWS gene to the ETS gene
ETV1.
Oncogene. 1995;10:1229.
[PubMed: 7700648]
99. Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al. Does
expression of different EWS chimeric transcripts define clinically
distinct risk groups of Ewing tumor patients?
J Clin Oncol.
1996;14:1245.
[PubMed: 8648380]
100. deAlava E, Kawai A, Healey J, et al. EWS-FLI1 fusion transcript
structure is an independent determinant of prognosis in Ewing’s
sarcoma. J Clin Oncol. 1998;16:1.
101. Ban J, Siligan C, Krepel M, et al. EWS-FLI1 in Ewing’s sarcoma:
real targets and collateral damage.
Adv Exp Med Biol. 2006;587:41.
[PubMed: 17163154]
102. Fellinger EJ, Garin CP, Glasser DB, et al. Comparison of
cell surface antigen HBA71 (p30/32MIC), neuron-specific enolase,
and vimentin in the immunohistochemical analysis of Ewing’s
sarcoma of bone.
Am J Surg Pathol. 1992;16:746.
[PubMed: 1497115]
103. Cavazzana AO, Miser JS, Jefferson J, et al. Experimental
evidence for a neural origin of Ewing’s sarcoma of bone.
Am
J Pathol. 1987;127:507.
[PubMed: 3035930]
104. Nogueira E, Navarro S, Pellin A, et al. Activation of TRK genes
in Ewing sarcoma. Trk A receptor expression linked to neural differentiation.
Diagn
Mol Pathol. 1997;6:10.
[PubMed: 9028732]
105. Yee D, Favoni RE, Lebovi GS, et al. Insulin-like growth factor
I expression by tumors of neuroectodermal origin with the t(11;22)
chromosomal translocation. A potential autocrine growth factor.
J
Clin Invest. 1990;86:1806.
[PubMed: 2174908]
106. Marina NM, Etcubanas E, Parham DM, et al. Peripheral primitive
neuroectodermal tumor (peripheral neuroepithelioma) in children.
A review of the St. Jude experience and controversies in diagnosis
and management.
Cancer. 1989;64:1952.
[PubMed: 2551479]
107. Hayes-Jordan A, Andrassy R. Rhabdomyosarcoma in children. Curr
Opin Pediatr 2009:21;373.
108. Wexler LC, WM. Helman, LJ. Rhabdomyosarcoma and the undifferentiated
sarcomas. In: Pizzo PP, Poplack DG, eds. Principles and
Practice of Pediatric Oncology. 4th ed. New York: Lippincott Williams
and Wilkins; 2002.
109. Turc-Cuel C, Lizard-Nacol S, Justrabo E, et al. Consistent chromosomal
translocation in alveolar rhabdomyosarcoma. Cancer Genet
Cytogenet. 1986;19:361.
110. Biegel JA, Meek RS, Parmiter AH, et al. Chromosomal translocation t(1;13)(p36;q14)
in a case of rhabdomyosarcoma.
Genes Chromosomes Cancer.
1991;3:483.
[PubMed: 1663783]
111. Douglass EC, Rowe ST, Valentine M, et al. Variant translocations
of chromosome 13 in alveolar rhabdomyosarcoma.
Genes Chromosomes
Cancer. 1991;3:480.
[PubMed: 1777415]
112. Barr FG. Molecular genetics and pathogenesis of rhabdomyosarcoma.
J
Pediatr Hematol Oncol. 1997;19:483.
[PubMed: 9407933]
113. Lagutina I, Conway SJ, Sublett J, et al. Pax3-FKHR knock-in
mice show developmental aberrations but do not develop tumors.
Mol
Cell Biol. 2002;22:7204.
[PubMed: 12242297]
114. Epstein J, Shapiro D, Cheng J, et al. Pax3 modulates expression
of the c-Met receptor during limb muscle development.
Proc
Natl Acad Sci USA. 1996;93:4213.
[PubMed: 8633043]
115. Ginsberg JP, Davis RJ, Bennicelli JL, et al. Up-regulation of
MET but not neural cell adhesion molecule expression by the PAX3-FKHR
fusion protein in alveolar rhabdomyosarcoma.
Cancer Res.
1998;58:3542.
[PubMed: 9721857]
116. Ferracini R, Olivero M, Di Renzo MF, et al. Retrogenic
expression of the MET proto-oncogene correlates with the invasive
phenotype of human rhabdomyosarcomas.
Oncogene.
1996;12:1697.
[PubMed: 8622890]
117. Sharp R, Recio JA, Jhappan C, et al. Synergism between INK4a/ARF
inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis.
Nat
Med. 2002;8:1276.
[PubMed: 12368906]
118. Tiffin N, Williams RD, Shipley J, et al. PAX7 expression in
embryonal rhabdomyosarcoma suggests an origin in muscle satellite
cells.
Br J Cancer. 2003;89:327.
[PubMed: 12865925]
119. Furman WL, Stewart CF, Poquette CA, et al. Direct translation
of a protracted irinotecan schedule from a xenograft model to a
phase I trial in children.
J Clin Oncol. 1999;17:1815.
[PubMed: 10561220]
120. Horton JK, Houghton PJ, Houghton JA. Relationships between
tumor responsiveness, vincristine pharmacokinetics and arrest of
mitosis in human tumor xenografts.
Biochem Pharmacol. 1988;37:3995.
[PubMed: 3190743]
121. Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes
poorly reversible inhibition of mTOR and induces p53-independent
apoptosis in human rhabdomyosarcoma cells.
Cancer Res.
1999;59:886.
[PubMed: 10029080]
122. Houghton JA, Meyer WH, Houghton PJ. Scheduling of vincristine:
drug accumulation and response of xenografts of childhood rhabdomyosarcoma determined
by frequency of administration.
Cancer Treat Rep.
1987;71:717.
[PubMed: 3607783]
123. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer
therapy.
Nat Rev Cancer. 2004;4:335.
[PubMed: 15122205]
124. Linardic CM, Downie DL, Qualman S, et al. Genetic modeling
of human rhabdomyosarcoma.
Cancer Res. 2005;65:4490.
[PubMed: 15930263]
125. Chardin P, Yeramian P, Madaule P, et al. N-ras gene activation
in the RD human rhabdomyosarcoma cell line.
Int J Cancer.
1985;35:647.
[PubMed: 3158613]
126. Stratton MR, Fisher C, Gusterson BA, et al. Detection of
point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using
oligonucleotide probes and the polymerase chain reaction.
Cancer
Res. 1989;49:6324.
[PubMed: 2680062]
127. Merlino G, Helman LJ. Rhabdomyosarcoma—working
out the pathways.
Oncogene. 1999;18: 5340.
[PubMed: 10498887]
128. Langenau DM, Keefe MD, Storer NY, et al. Effects of RAS
on the genesis of embryonal rhabdomyosarcoma.
Genes Dev.
2007;21:1382.
[PubMed: 17510286]
129. Scrable H, Witte D, Lampkin B, et al. Chromosomal localization
of the human rhabdomyosarcoma locus by mitotic recombination mapping.
Nature.
1987;329:645.
[PubMed: 3657988]
130. Scrable H, Witte D, Shimada H, et al. Molecular differential pathology
of rhabdomyosarcoma.
Genes Chromosomes Cancer. 1989;1:23.
[PubMed: 2487144]
131. Scrable H, Cavenee W, Ghavimi F, et al. A model for embryonal
rhabdomyosarcoma tumorigenesis that involves genome imprinting.
Proc
Natl Acad Sci USA. 1989;86:7480.
[PubMed: 2798419]
132. Rainier S, Johnson LA, Dobry CJ, et al. Relaxation of imprinted
genes in human cancer.
Nature. 1993;362:747.
[PubMed: 8385745]
133. Ogawa O, Eccles MR, Szeto J, et al. Relaxation of insulin-like
growth factor II gene imprinting implicated in Wilms tumour.
Nature.
1993; 362:749.
[PubMed: 8097018]
134. Zhan S, Shapiro DN, Helman LJ. Activation of an imprinted allele
of the insulin-like growth factor II gene implicated in rhabdomyosarcoma.
J
Clin Invest. 1994;94:445.
[PubMed: 8040287]
135. Zhan S, Shapiro D, Zhang L, et al. Concordant loss of imprinting
of the human insulin-like growth factor II gene promoters in cancer.
J
Biol Chem. 1995;270:27983.
[PubMed: 7499276]
136. Hahn H, Wojnowski L, Zimmer AM, et al. Rhabdomyosarcoma
and radiation hypersensitivity in a mouse model of Gorlin syndrome.
Nat
Med. 1998;4:619.
[PubMed: 9585239]
137. Goodrich LV, Milenkovic L, Higgins KM, et al. Altered neural
cell fates and medulloblastoma in mouse patched mutants.
Science. 1997;277:1109.
[PubMed: 9262482]
138. Dahlin DC, Unni KK. Bone Tumors: General Aspects and
Data on 8542 Cases. 4th ed. Springfield, IL: CC Thomas;
1986.
139. Price C. Primary bone-forming tumours and their relationship
to skeletal growth.
J Bone Joint Surg. 1958;40:574.
[PubMed: 13575473]
140. Fraumeni J. Stature and malignant tumors of bone in childhood
and adolescence.
Cancer. 1967;20:967.
[PubMed: 5229526]
141. Dahlin D, Unni K. Osteosarcoma of bone and its important recognizable
varieties.
Am J Surg Pathol. 1977;1:61.
[PubMed: 203202]
142. Mitelman F. Recurrent chromosome aberrations in cancer.
Mutat
Res. 2000;462:247-253.
[PubMed: 10767636]
143. Ladanyi M, Gorlick R. Molecular pathology and molecular
pharmacology of osteosarcoma. Pediatr Pathol Mol Med.
2000;19:391-413.
144. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in
a familial syndrome of breast cancer, sarcomas, and other neoplasms [comment].
Science.
1990;250:1233-1238.
[PubMed: 1978757]
145. Quesnel S, Malkin D. Genetic predisposition to cancer and
familial cancer syndromes.
Pediatr Clin North Am.
1997;44:791-808.
[PubMed: 9286285]
146. Wei G, Lonardo F, Ueda T, et al. CDK4 gene amplification in
osteosarcoma: reciprocal relationship with INK4A gene alterations
and mapping of 12q13 amplicons.
Int J Cancer. 1999;80:199-204.
[PubMed: 9935200]
147. Bridge JA, Nelson M, McComb E, et al. Cytogenetic findings
in 73 osteosarcoma specimens and a review of the literature.
Cancer
Genet Cytogenet. 1997;95:74-87.
[PubMed: 9140456]
148. Boehm AK, Squire JA, Bayani J, et al. Cytogenetic findings
in 36 osteosarcoma specimens and a review of the literature. Ped
Pathol Mol Med. 2000;19:359-376.
149. Raymond AK, Ayala AG, Knuutila S. Conventional osteosarcoma.
In: Kleihues P, Sobin L, Fletcher C, et al, eds. WHO Classification
of Tumours: Pathology and Genetics of Tumours of Soft Tissue and
Bone. Lyon, France: IARC Press; 2002:267-269.
150. Sandberg AA, Bridge JA. Updates on the cytogenetics and
molecular genetics of bone and soft tissue tumors: osteosarcoma
and related tumors.
Cancer Gene Cytogen. 2003;145:1.
[PubMed: 12885459]
151.Squire JA, Pei J, Marrano P, et al. High-resolution
mapping of amplifications and deletions in pediatric osteosarcoma
by use of CGH analysis of cDNA microarrays.
Genes Chromos
Cancer. 2003;38:215.
[PubMed: 14506695]
152. Bayani J, Zielenska M, Pandita A, et al. SKY identifies
recurrent complex rearrangements involving chromosomes 8, 17, and
20 in osteosarcomas.
Genes Chromosom Cancer. 2003;36:7-16.
[PubMed: 12461745]
153. Yamaguchi T, Toguchida J, Yamamuro T, et al. Allelotype analysis
in osteosarcomas: frequent allele loss on 3q, 13q, 17p, and 18q.
Cancer
Research. 1992;52:2419-2423.
[PubMed: 1568211]
154. Tarkkanen M, Karhu R, Kallioniemi A, et al. Gains and losses
of DNA sequences in osteosarcomas by comparative genomic hybridization.
Cancer
Research. 1995;55:1334-1338.
[PubMed: 7882332]
155. Kruzelock RP, Murphy EC, Strong LC, et al. Localization of
a novel tumor suppressor locus on human chromosome 3q important
in osteosarcoma tumorigenesis.
Cancer Research. 1997;57:106-109.
[PubMed: 8988049]
156. Nellissery MJ, Padalecki SS, Brkanac Z, et al. Evidence
for a novel osteosarcoma tumor-suppressor gene in the chromosome
18 region genetically linked with Paget disease of bone.
Am
J Hum Genet. 1998;63:817-24.
[PubMed: 9718349]
157. Hoogerwerf WA, Hawkins AL, Perlman EJ, et al. Chromosome
analysis of nine osteosarcomas.
Genes Chromosomes Cancer. 1994;9:88-92.
[PubMed: 7513549]
158. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction
promotes non-reciprocal translocations and epithelial cancers in
mice [comment].
Nature. 2000;406:641-645.
[PubMed: 10949306]
159. Harley CB. Telomere loss: Mitotic clock or genetic time bomb?
Mutat
Res. 1991;256:271-282.
[PubMed: 1722017]
160. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span
by introduction of telomerase into normal human cells [comment].
Science.
1998;279:349-352.
[PubMed: 9454332]
161. Shay JW, Bacchetti S. A survey of telomerase activity in
human cancer.
Eur J Cancer. 1997; 33:787-791.
[PubMed: 9282118]
162. Bryan TM, Englezou A, Dalla-Pozza L, et al. Evidence for
an alternative mechanism for maintaining telomere length in human
tumors and tumor-derived cell lines [comment].
Nat
Med. 1997;3:1271.
[PubMed: 9359704]
163. Scheel C, Schaefer KL, Jauch A, et al. Alternative lengthening
of telomeres is associated with chromosomal instability in osteosarcomas.
Oncogene.
2001;20:3835.
[PubMed: 11439347]
164. Aue G, Muralidhar B, Schwartz HS, et al. Telomerase activity
in skeletal sarcomas.
Ann Surg Oncol. 1998;5:627.
[PubMed: 9831112]
165. Sangiorgi L, Gobbi GA, Lucarelli E, et al. Presence of telomerase
activity in different musculoskeletal tumor histotypes and correlation
with aggressiveness.
Int J Cancer. 2001;95:156.
[PubMed: 11307148]
166. Chang S, Khoo CM, Naylor ML, et al. Telomere-based crisis:
functional differences between telomerase activation and ALT in
tumor progression.
Genes Dev. 2003;17:88.
[PubMed: 12514102]
167. Hicks MJ, Roth JR, Kozinetz CA, et al. Clinico-pathologic features
of osteosarcoma in patients with Rothmund-Thompson syndrome.
J
Clin Oncol. 2007;25:370.
[PubMed: 17264332]
168. Poulaki V, Mitsiades N, Romero ME, et al. Fas-mediated
apoptosis in neuroblastoma requires mitochondrial activation and
is inhibited by FLICE inhibitor protein and Bcl-2.
Can Res.
2001;61:4864.
[PubMed: 11406564]
169. Mitsiades N, Poulaki V, Mitsiades C, et al. Ewing’s
sarcoma family tumors are sensitive to tumor necrosis factor-related
apoptosis-inducing ligand and express death receptor 4 and death
receptor 5.
Can Res. 2001;61:2704.
[PubMed: 11289151]
170. Hewitt RE, McMarlin A, Kleiner D, et al. Validation of a
model of colon cancer progression (erratum appears in
J
Pathol. 2001;194(4):507, Note: Tsoskas M [corrected
to Tsokos M]).
J Pathol. 2000;192:446.
[PubMed: 11113861]
171. Worth LL, Lafleur EA, Jia SF, et al. Fas expression inversely
correlates with metastatic potential in osteosarcoma cells.
Oncol
Reports. 2002;9:823.
[PubMed: 12066216]
172. Jia SF, Worth LL, Kleinerman ES. A nude mouse model of
human osteosarcoma lung metastases for evaluating new therapeutic
strategies.
Clin Exp Metastasis. 1999;17:501.
[PubMed: 10763916]
173. Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic
study and identification of a familial cancer syndrome.
J
Natl Cancer Inst. 1969;43:1365.
[PubMed: 5396222]
174. Li FP, Fraumeni JF Jr. Prospective study of a family cancer
syndrome.
JAMA. 1982;247:2692.
[PubMed: 7077763]
175. Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome
in twenty-four kindreds.
Cancer Res. 1988;48:5358.
[PubMed: 3409256]
176. Nichols KE, Malkin D, Garber JE, et al. Germ-line p53 mutations
predispose to a wide spectrum of early-onset cancers.
Cancer
Epidemiol Biomarkers Prev. 2001;10:83.
[PubMed: 11219776]
177. Olivier M, Goldgar DE, Sodha N, et al. Li-Fraumeni and
related syndromes: correlation between tumor type, family structure,
and TP53 genotype.
Cancer Res. 2003;63:6643.
[PubMed: 14583457]
178. Chompret A, Brugieres L, Ronsin M, et al. P53 germline mutations
in childhood cancers and cancer risk for carrier individuals.
Br
J Cancer. 2000;82:1932.
[PubMed: 10864200]
179. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in
a familial syndrome of breast cancer, sarcomas, and other neoplasms.
Science.
1990;250:1233.
[PubMed: 1978757]
180. Srivastava S, Zou ZQ, Pirollo K, et al. Germ-line transmission
of a mutated p53 gene in a cancer-prone family with Li-Fraumeni
syndrome.
Nature. 1990;348:747.
[PubMed: 2259385]
181. Malkin D. Li-Fraumeni syndrome. In: Vogelstein B, Kinzler
KW, eds. The Genetic Basis of Human Cancer. New
York: McGraw-Hill; 1998.
182. Sedlacek Z, Kodet R, Seemanova E, et al. Two Li-Fraumeni
syndrome families with novel germline p53 mutations: loss of the
wild-type p53 allele in only 50% of tumours.
Br
J Cancer. 1998;77:1034.
[PubMed: 9569035]
183. Varley JM, Thorncroft M, McGown G, et al. A detailed study
of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni
patients carrying a mutation to the TP53 gene.
Oncogene.
1997;14:865.
[PubMed: 9047394]
184. Frebourg T, Kassel J, Lam KT, et al. Germ-line mutations
of the p53 tumor suppressor gene in patients with high risk for
cancer inactivate the p53 protein.
Proc Natl Acad Sci USA. 1992;
89:6413.
[PubMed: 1631137]
185. Olivier M, Eeles R, Hollstein M, et al. The IARC TP53 database:
new online mutation analysis and recommendations to users.
Hum
Mutat. 2002;19:607.
[PubMed: 12007217]
186. Bell DW, Varley JM, Szydlo TE, et al. Heterozygous germ line
hCHK2 mutations in Li-Fraumeni syndrome.
Science.
1999;286:2528.
[PubMed: 10617473]
187. Bougeard G, Limacher JM, Martin C, et al. Detection of
11 germline inactivating TP53 mutations and absence of TP63 and
HCHK2 mutations in 17 French families with Li-Fraumeni or Li-Fraumeni-like
syndrome.
J Med Genet. 2001;38:253.
[PubMed: 11370630]
188. Diller L, Sexsmith E, Gottlieb A, et al. Germline p53 mutations
are frequently detected in young children with rhabdomyosarcoma.
J
Clin Invest. 1995;95:1606.
[PubMed: 7706467]
189. McIntyre JF, Smith-Sorensen B, Friend SH, et al. Germline mutations
of the p53 tumor suppressor gene in children with osteosarcoma.
J
Clin Oncol. 1994;12:925.
[PubMed: 8164043]
190. Wagner J, Portwine C, Rabin K, et al. High frequency of germline
p53 mutations in childhood adrenocortical cancer.
J Natl
Cancer Inst. 1994;86:1707.
[PubMed: 7966399]
191. Varley JM, McGown G, Thorncroft M, et al. Are there low-penetrance
TP53 alleles? Evidence from childhood adrenocortical tumors.
Am
J Hum Genet. 1999;65:995.
[PubMed: 10486318]
192. Ribeiro RC, Sandrini F, Figueiredo B, et al. An inherited
p53 mutation that contributes in a tissue-specific manner to pediatric
adrenal cortical carcinoma.
Proc Natl Acad Sci USA. 2001;98:9330.
[PubMed: 11481490]
193. DiGiammarino EL, Lee AS, Cadwell C, et al. A novel mechanism
of tumorigenesis involving pH-dependent destabilization of a mutant
p53 tetramer.
Nat Struct Biol. 2002;9:12.
[PubMed: 11753428]
194. Wu CC, Shete S, Amos CI, et al. Joint effects of germ-line
p53 mutation and sex on cancer risk in Li-Fraumeni Syndrome.
Cancer
Res. 2006;66: 8287.
[PubMed: 16912210]
195. Bougeard G, Baert-Deurmont S, Tournier L, et al. Impact
of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumor
onset in Li-Fraumeni syndrome.
J Med Genet. 2006;43:531.
[PubMed: 16258005]
196. Tabori U, Nanda S, Druker H, et al. Younger age of cancer initiation
is associated with shorter telomere length in Li-Fraumeni syndrome.
Cancer
Res. 2007;67:1415.
[PubMed: 17308077]
197. Weksberg R, Smith AC, Squire J, et al. Beckwith-Wiedemann
syndrome demonstrates a role for epigenetic control of normal development. Human
Molec Genet. 2003;12:R61-68.
198. Clericuzio CL, Johnson C. Screening for Wilms tumor in high-risk
individuals.
Hematol Oncol Clin North Am. 1995;9:1253.
[PubMed: 8591963]
199. Weksberg R, Teshima I, Williams BR, et al. Molecular characterization
of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome
(BWS) phenotype refines the localization and suggests the gene for
BWS is imprinted.
Hum Mol Genet. 1993;2:549.
[PubMed: 8518793]
200. Mannens M, Hoovers JM, Redeker E, et al. Parental imprinting
of human chromosome region 11p15.3-pter involved in the Beckwith-Wiedemann
syndrome and various human neoplasia.
Eur J Hum Genet.
1994;2:3.
[PubMed: 7913866]
201. Weksberg R, Nishikawa J, Caluseriu O, et al. Tumor development
in the Beckwith-Wiedemann syndrome is associated with a variety
of constitutional molecular 11p15 alterations including imprinting
defects of KCNQ1OT1.
Human Mol Genet. 2001;10:2989.
[PubMed: 11751681]
202. Henry I, Jeanpierre M, Barichard F, et al. Duplication
of HRAS1, INS, and IGF2 is not a common event in Beckwith-Wiedemann
syndrome.
Ann Genet. 1988;31:216.
[PubMed: 2905880]
203. Henry I, Bonaiti-Pellie C, Chehensse V, et al. Uniparental
paternal disomy in a genetic cancer-predisposing syndrome.
Nature.
1991;351:665.
[PubMed: 1675767]
204. Reik W, Brown KW, Schneid H, et al. Imprinting mutations
in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern
in the IGF2-H19 domain.
Hum Mol Genet. 1995;4:2379.
[PubMed: 8634713]
205. Li M, Squire J, Shuman C, et al. Imprinting status of 11p15 genes
in Beckwith-Wiedemann syndrome patients with CDKN1C mutations.
Genomics.
2001;74:370.
[PubMed: 11414765]
206. Feinberg AP. Genomic imprinting and gene activation in
cancer.
Nat Genet. 1993;4:110.
[PubMed: 8348145]
207. Gorlin RJ. Nevoid basal-cell carcinoma syndrome.
Medicine(Baltimore). 1987;66:98.
[PubMed: 3547011]
208. Gailani MR, Stahle-Backdahl M, Leffell DJ, et al. The role
of the human homologue of Drosophila patched in sporadic basal cell
carcinomas.
Nat Genet. 1996;14:78.
[PubMed: 8782823]
209. Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of
the human homolog of Drosophila patched in the nevoid basal cell
carcinoma syndrome.
Cell. 1996;85:841.
[PubMed: 8681379]
210. Cowan R, Hoban P, Kelsey A, et al. The gene for the naevoid
basal cell carcinoma syndrome acts as a tumour-suppressor gene in
medulloblastoma.
Br J Cancer. 1997;76:141.
[PubMed: 9231911]
211. Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose
to medulloblastoma.
Nat Genet. 2002;31:306.
[PubMed: 12068298]
212. Hahn H, Wojnowski L, Zimmer AM, et al. Rhabdomyosarcomas
and radiation hypersensitivity in a mouse model of Gorlin syndrome.
Nat
Med. 1998;4:619.
[PubMed: 9585239]
213. Zhan S, Helman LJ. Glimpsing the cause of rhabdomyosarcoma.
Nat
Med. 1998;4:559.
[PubMed: 9585226]
214. Pang JT, Thakker RV. Multiple endocrine neoplasia type
I (MEN1). Eur J Cancer. 1994;30A:1961.
215. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional
cloning of the gene for multiple endocrine neoplasia-type 1.
Science.
1997;276:404.
[PubMed: 9103196]
216. Gardner E, Papi L, Easton DF, et al. Genetic linkage studies
map the multiple endocrine neoplasia type 2 loci to a small interval
on chromosome 10q11.2.
Hum Mol Genet. 1993;2:241.
[PubMed: 8098977]
217. Bassett JH, Forbes SA, Pannett AA, et al. Characterization of
mutations in patients with multiple endocrine neoplasia type 1.
Am
J Hum Genet. 1998;62:232.
[PubMed: 9463336]
218. Brandi ML, Gagel RF, Angeli A, et al. Guidelines for diagnosis
and therapy of MEN type 1 and type 2.
J Clin Endocrinol
Metab. 2001;86:5658.
[PubMed: 11739416]
219. Moore SW, Appfelstaedt J, Zaahl MG. Familial medullary carcinoma
prevention, risk evaluation, and RET in children of families with
MEN2A.
J Pediatr Surg. 2007;42:326.
[PubMed: 17270543]
220. Statement of the American Society of Clinical Oncology: genetic
testing for cancer susceptibility. Adopted on February 20, 1996. J
Clin Oncol. 1996;14:1730.