1. Hoffman JI, Kaplan S. The incidence of congenital heart
disease. J Am Coll Cardiol. 2002;39(12):1890-1900.
2. Srivastava D. Heart disease: an ongoing genetic battle? Nature.
2004;429(6994):819-822.
3. Srivastava D. Making or breaking the heart: from lineage
determination to morphogenesis.
Cell. 2006;126:1037-1048.
[PubMed: 16990131]
4. Srivastava D, Ivey KN. Potential of stem cell-based therapies
for heart disease.
Nature. 2006;441:1097-1099.
[PubMed: 16810246]
5. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of
Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in
cardiogenesis and disease. Cell. 2001;106(6):709-721.
6. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart
from two sources of myocardial cells. Nat Rev Genet.
2005;6(11):826-835.
7. Olson EN. Gene regulatory networks in the evolution and development
of the heart. Science. 2006;313(5795):1922-1927.
8. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow
tract of the heart is recruited from a novel heart-forming field.
Dev
Biol. 2001; 238(1):97-109.
[PubMed: 11783996]
9. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium
arises from a secondary heart field. Development.
2001;128(16):3179-3188.
10. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic
proteins in the induction of cardiac myogenesis. Genes Dev.
1997;11(4):451-462.
11. Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis
in Xenopus laevis. Genes Dev.
2001;15(3):304-315.
12. Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition
of Wnt activity induces heart formation from posterior mesoderm. Genes
Dev. 2001;15(3):316-327.
13. Zaffran S, Frasch M. Early signals in cardiac development. Circ
Res. 2002;91(6):457-469.
14. Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac
progenitor population that proliferates prior to differentiation
and contributes a majority of cells to the heart. Dev Cell.
2003;5(6):877-889.
15. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1
and microRNA-133 in skeletal muscle proliferation and differentiation. Nat
Genet. 2006;38(2):228-233.
16. Stuckmann I, Evans S, Lassar AB. Erythropoietin and retinoic
acid, secreted from the epicardium, are required for cardiac myocyte
proliferation. Dev Biol. 2003;255(2):334-349.
17. Garratt AN, Ozcelik C, Birchmeier C. ErbB2 pathways in heart and
neural diseases. Trends CardiovascMed.
2003;13(2):80-86.
18. Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts
enter fully differentiated cardiomyocyte lineages. Nature.
2005;433(7026):647-653.
19. Srivastava D. Left, right...which way to turn? Nat
Genet. 1997;17(3):252-254.
20. Yamagishi H, Yamagishi C, Nakagawa O, Harvey RP, Olson EN,
Srivastava D. The combinatorial activities of Nkx2.5 and dHAND are
essential for cardiac ventricle formation. Dev Biol.
2001;239(2):190-203.
21. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac
morphogenesis and myogenesis by transcription factor MEF2C. Science.
1997;276(5317):1404-1407.
22. Gottlieb PD, Pierce SA, Sims RJ, et al. Bop encodes a muscle-restricted
protein containing MYND and SET domains and is essential for cardiac
differentiation and morphogenesis. Nat Genet. 2002;31(1):25-32.
23. Lickert H, Takeuchi JK, Von Both I, et al. Baf60c is essential
for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432(7013):107-112.
24. Zhao Y, Samal E, Srivastava D. Serum response factor regulates
a muscle-specific mircroRNA that targets Hand2 during cardiogenesis.
Nature.
2005;436:214-220.
[PubMed: 15951802]
25. Kwon C, Han Z, Olson EN, Srivastava D. MicroRNA1 influences
cardiac differentiation in Drosophila and regulates
Notch signaling. Proc Natl Acad Sci U S A. 2005;102(52):18986-18991.
26. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac
conduction, and cell cycle in mice lacking miRNA-1-2.
Cell.
2007;129:303-317.
[PubMed: 17397913]
27. Zhao Y, Srivastava D. A developmental view of microRNA function.
Trends
Biochem Sci. 2007;32: 189-197.
[PubMed: 17350266]
28. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in
gene regulation. Nat Rev Genet. 2004;5(7):522-531.
29. Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. Proc
Natl Acad Sci U S A. 2006;103(10):3687-3692.
30. Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left/right
asymmetric expression of bHLH gene eHand during
murine heart development. Genes Dev. 1997;11(11):1357-1369.
31. Thomas B, Sharpe P. Patterning of the murine dentition by
homeobox genes. Eur J Oral Sci. 1998;106(suppl
1):48-54.
32. Harrelson Z, Kelly RG, Goldin SN, et al. Tbx2 is
essential for patterning the atrioventricular canal and for morphogenesis
of the outflow tract during heart development. Development.
2004;131(20):5041-5052.
33. Palmer AR. Symmetry breaking and the evolution of development. Science.
2004;306(5697):828-833.
34. Kioussi C, Briata P, Baek SH, et al. Identification of a
Wnt/Dvl/beta-Catenin → Pitx2
pathway mediating cell-type-specific proliferation during development. Cell.
2002;111(5):673-685.
35. Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow
BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating
Pitx2 in the secondary heart field. Development.
2006;133 (8):1565-1573.
36. Hutson MR, Kirby ML. Neural crest and cardiovascular development:
a 20-year perspective. Birth Defects ResC
Embryo Today. 2003;69(1):2-13.
37. Le Douarin NM, Creuzet S, Couly G, Dupin E. Neural crest cell
plasticity and its limits. Development. 2004;131(19):4637-4650.
38. Stoller JZ, Epstein JA. Cardiac neural crest. Semin
Cell Dev Biol. 2005;16(6):704-715.
39. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice
mutant for the T-box gene, Tbx1. Nat Genet.
2001;27(3):286-291.
40. Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN. Fgf8 is
required for pharyngeal arch and cardiovascular development in the
mouse. Development. 2002;129(19):4613-4625.
41. Frank DU, Fotheringham LK, Brewer JA, et al. An Fgf8 mouse
mutant phenocopies human 22q11 deletion syndrome. Development.
2002;129(19): 4591-4603.
42. Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava
D. Tbx1 regulates fibroblast growth factors in
the anterior heart field through a reinforcing autoregulatory loop
involving forkhead transcription factors. Development.
2004;131(21):5491-5502.
43. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in
human del22q11.2 syndrome. Lancet. 2003;362(9393):1366-1373.
44. Beis D, Bartman T, Jin SW, et al. Genetic and cellular analyses
of zebrafish atrioventricular cushion and valve development. Development.
2005;132(18):4193-4204.
45. Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac
cushion epithelial-mesenchymal transition and myocardial patterning. Development.
2005;132(24):5601-5611.
46. Gaussin V, Van de Putte T, Mishina Y, et al. Endocardial
cushion and myocardial defects after cardiac myocyte-specific conditional
deletion of the bone morphogenetic protein receptor ALK3. Proc
Natl Acad Sci U S A. 2002;99(5):2878-2883.
47. Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required
for cushion formation and septation in the developing mouse heart. Dev
Biol. 2001;235(2):449-466.
48. Brown CB, Boyer AS, Runyan RB, Barnett JV. Requirement of type
III TGF-beta receptor for endocardial cell transformation in the
heart. Science. 1999;283(5410):2080-2082.
49. Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics
and pathogenesis.
Annu Rev Genomics Hum Genet.
2005;6:45-68.
[PubMed: 16124853]
50. Yamagishi H, Maeda J, Hu T, et al. Tbx1 is regulated by
tissue-specific forkhead proteins through a common Sonic hedgehog-responsive
enhancer. Genes Dev. 2003;17(2):269-281.
51. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid
aortic valve is heritable.
J Am Coll Cardiol. 2004;44(1):138–143.
[PubMed: 15234422]
52. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused
by mutations in human
Jagged1, which encodes a
ligand for
Notch1.
Nat Genet.
1997;16(3):243–251.
[PubMed: 9207788]
53. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged1 gene
are responsible for Alagille syndrome. Nat Genet.
1997;16(3):235-242.
54. Krantz ID, Smith R, Colliton RP, et al.
Jagged1 mutations
in patients ascertained with isolated congenital heart defects.
Am
J Med Genet. 1999; 84(1):56-60.
[PubMed: 10213047]
55. Shimada Y, Ho E, Toyota N. Epicardial covering over myocardial
wall in the chicken embryo as seen with the scanning electron microscope. Scan
Electron Microsc. 1981(pt 2):275-280.
56. Viragh S, Challice CE. The origin of the epicardium and
the embryonic myocardial circulation in the mouse. Anat
Rec. 1981;201(1):157-168.
57. Viragh S, Gittenberger-de Groot AC, Poelmann RE, Kalman F.
Early development of quail heart epicardium and associated vascular
and glandular structures. Anat Embryol. 1993;188(4):381-393.
58. Komiyama M, Ito K, Shimada Y. Origin and development of
the epicardium in the mouse embryo. Anat Embryol.
1987;176(2):183-189.
59. Hiruma T, Hirakow R. Epicardial formation in embryonic chick
heart: computer-aided reconstruction, scanning, and transmission
electron microscopic studies. Am J Anat. 1989;184(2):129-138.
60. Bogers AJ, Gittenberger-de Groot AC, Dubbeldam JA, Huysmans
HA. The inadequacy of existing theories on development of the proximal coronary
arteries and their connexions with the arterial trunks. Int
J Cardiol. 1988;20(1):117-123.
61. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Peault
BM, Huysmans HA. Development of the origin of the coronary arteries,
a matter of ingrowth or outgrowth? Anat Embryol.
1989;180 (5):437-441.
62. Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp
R, Hogers B. Development of the cardiac coronary vascular endothelium,
studied with antiendothelial antibodies, in chicken-quail chimeras. Circ
Res. 1993;73(3):559-568.
63. Kirby ML, Waldo KL. Role of neural crest in congenital heart
disease. Circulation. 1990;82(2):332-340.
64. Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital
heart disease: loss of ventricular myocyte lineage specification
leads to progressive cardiomyopathy and complete heart block. Cell.
2004;117(3):373-386.
65. Jay PY, Harris BS, Maguire CT, et al. Nkx2-5 mutation causes anatomic
hypoplasia of the cardiac conduction system. J Clin Invest.
2004;113(8):1130-1137.
66. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause
aortic valve disease. Nature. 2005;437(7056):270-274.
67. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN,
Whitehead AS. Spina bifida. Lancet. 2004;364(9448):1885-1895.