1. Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk
factors and congenital cardiovascular defects: current knowledge:
a scientific statement from the American Heart Association Council
on Cardiovascular Disease in the Young: endorsed by the American
Academy of Pediatrics. Circulation. 2007;115(23):2995-3014.
2. Eskedal L, Hagemo P, Eskild A, Aamodt G, Seiler KS, Thaulow
E. A population-based study of extra-cardiac anomalies in children
with congenital cardiac malformations. Cardiol Young. 2004;14(6):600-607.
3. Stoll C, Alembik Y, Roth MP, Dott B, De Geeter B. Risk factors in
congenital heart disease. Eur J Epidemiol. 1989;5(3):382-391.
4. Jones K. Smith’s Recognizable Patterns of Human
Malformation. 6th ed. Philadelphia: Saunders; 2006.
5. Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry
LW. Congenital cardiovascular malformations associated with chromosome
abnormalities: an epidemiologic study. J Pediatr. 1989;114(1):79-86.
6. Chinn A, Fitzsimmons J, Shepard TH, Fantel AG. Congenital heart
disease among spontaneous abortuses and stillborn fetuses: prevalence
and associations. Teratology. 1989;40(5):475-482.
7. Pierpont M, Moller J. Chromosomal abnormalities. In: Pierpont
M, Moller J, eds. The Genetics of Cardiovascular Disease.
Boston: Nijhoff; 1987:13-24.
8. Freeman SB, Taft L, Dooley K, et al. Population-based study
of congenital heart defects in Down syndrome. Am J Med Genet. 1998;80(3):213-217.
9. American Academy of Pediatrics. Health supervision for children
with Down syndrome. Pediatrics. 2001;107(2):442-449.
10. Clapp S, Perry BL, Farooki ZQ, et al. Down’s syndrome,
complete atrioventricular canal, and pulmonary vascular obstructive disease. J
Thorac Cardiovasc Surg. 1990;100(1):115-121.
11. Hals J, Hagemo PS, Thaulow E, Sorland SJ. Pulmonary vascular resistance
in complete atrioventricular septal defect: a comparison between
children with and without Down’s syndrome. Acta
Paediatr. 1993;82(6-7):595-598.
12. Barlow GM, Chen XN, Shi ZY, et al. Down syndrome congenital
heart disease: a narrowed region and a candidate gene. Genet
Med. 2001;3(2):91-101.
13. Arron JR, Winslow MM, Polleri A, et al. NFAT dysregulation
by increased dosage of
DSCR1 and
DYRK1A on
chromosome 21.
Nature. 2006; 441(7093):595-600.
[PubMed: 16554754]
14. de la Pompa JL, Timmerman LA, Takimoto H, et al. Role of
the NF-ATc transcription factor in morphogenesis of cardiac valves and
septum. Nature. 1998;392(6672):182-186.
15. Ranger AM, Grusby MJ, Hodge MR, et al. The transcription
factor NF-ATc is essential for cardiac valve formation. Nature. 1998;392(6672):186-190.
16. Cousineau AJ, Lauer RM, Pierpont ME, et al. Linkage analysis
of autosomal dominant atrioventricular canal defects: exclusion
of chromosome 21. Hum Genet. 1994;93(2):103-108.
17. Wilson L, Curtis A, Korenberg JR, et al. A large, dominant
pedigree of atrioventricular septal defect (AVSD): exclusion from
the Down syndrome critical region on chromosome 21. Am J
Hum Genet. 1993;53(6):1262-1268.
18. Van Praagh S, Truman T, Firpo A, et al. Cardiac malformations
in trisomy-18: a study of 41 postmortem cases. J Am Coll
Cardiol. 1989;13(7):1586-1597.
19. Rasmussen SA, Wong L-YC, Yang Q, May KM, Friedman JM. Population-based
analyses of mortality in trisomy 13 and trisomy 18. Pediatrics. 2003;111(4):777-784.
20. Boghosian-Sell L, Mewar R, Harrison W, et al. Molecular
mapping of the Edwards syndrome phenotype to two noncontiguous regions
on chromosome 18. Am J Hum Genet. 1994;55(3): 476-483.
21. Lin H-Y, Lin S-P, Chen Y-J, et al. Clinical characteristics
and survival of trisomy 13 in a medical center in Taiwan, 1985-2004. Pediatr
Int. 2007;49(3):380-386.
22. Musewe NN, Alexander DJ, Teshima I, Smallhorn JF, Freedom RM.
Echocardiographic evaluation of the spectrum of cardiac anomalies
associated with trisomy 13 and trisomy 18. J Am Coll Cardiol. 1990;15(3):673-677.
23. Bondy CA. Congenital cardiovascular disease in Turner syndrome. Congenit
Heart Dis. 2008;3 (1):2-15.
24. Matura LA, Ho VB, Rosing DR, Bondy CA. Aortic dilatation and
dissection in Turner syndrome. Circulation. 2007;116(15):1663-1670.
25. van Egmond H, Orye E, Praet M, Coppens M, Devloo-Blancquaert
A. Hypoplastic left heart syndrome and 45X karyotype. Br
Heart J. 1988;60 (1):69-71.
26. Gravholt CH, Landin-Wilhelmsen K, Stochholm K, et al. Clinical
and epidemiological description of aortic dissection in Turner’s
syndrome. Cardiol Young. 2006;16(5):430-436.
27. Lippe BM, Kogut MD. Aortic rupture in gonadal dysgenesis. J
Pediatr. 1972;80(5):895-896.
28. Ostberg JE, Donald AE, Halcox JP, Storry C, McCarthy C, Conway
GS. Vasculopathy in Turner syndrome: arterial dilatation and intimal
thickening without endothelial dysfunction. J Clin Endocrinol
Metab. 2005;90(9):5161-5166.
29. Bondy CA. Care of girls and women with Turner syndrome:
a guideline of the Turner Syndrome Study Group. J Clin Endocrinol
Metab. 2007;92 (1):10-25.
30. Bondy CA, Ceniceros I, Van PL, Bakalov VK, Rosing DR. Prolonged
rate-corrected QT interval and other electrocardiogram abnormalities
in girls with Turner syndrome. Pediatrics. 2006;118(4):e1220-1225.
31. Blaschke RJ, Rappold GA. SHOX: growth, Leri-Weill and Turner
syndromes. Trends Endocrinol Metab. 2000;11(6):227-230.
32. Lacro RV, Jones KL, Benirschke K. Coarctation of the aorta in
Turner syndrome: a pathologic study of fetuses with nuchal cystic hygromas,
hydrops fetalis, and female genitalia. Pediatrics. 1988;81(3):445-451.
33. Loscalzo ML, Van PL, Ho VB, et al. Association between fetal lymphedema
and congenital cardiovascular defects in Turner syndrome. Pediatrics. 2005;115(3):732-735.
34. Miyabara S, Nakayama M, Suzumori K, Yonemitsu N, Sugihara H.
Developmental analysis of cardiovascular system of 45,X fetuses with
cystic hygroma. Am J Med Genet. 1997;68(2):135-141.
35. Burn J, Takao A, Wilson D, et al. Conotruncal anomaly face
syndrome is associated with a deletion within chromosome 22q11. J
Med Genet. 1993;30(10):822-824.
36. Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for
DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am
J Hum Genet. 1992;50(5):924-933.
37. Driscoll DA, Spinner NB, Budarf ML, et al. Deletions and
microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am
J Med Genet. 1992;44(2):261-268.
38. McDonald-McGinn DM, LaRossa D, Goldmuntz E, et al. The 22q11.2
deletion: screening, diagnostic workup, and outcome of results:
report on 181 patients. Genet Test. 1997;1(2):99-108.
39. Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical
features associated with interstitial chromosome 22q11 deletions:
a European collaborative study. J Med Genet. 1997;34(10):798-804.
40. Marino B, Digilio MC, Toscano A, et al. Anatomic patterns
of conotruncal defects associated with deletion 22q11. Genet
Med. 2001;3(1):45-48.
41. Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of
22q11 deletions in patients with conotruncal defects. J
Am Coll Cardiol. 1998;32(2): 492-498.
42. Momma K, Kondo C, Ando M, Matsuoka R, Takao A. Tetralogy of
Fallot associated with chromosome 22q11 deletion. Am J Cardiol. 1995;76(8):618-621.
43. Anaclerio S, Di Ciommo V, Michielon G, et al. Conotruncal heart
defects: impact of genetic syndromes on immediate operative mortality. Ital
Heart J. 2004;5(8):624-628.
44. Mahle WT, Crisalli J, Coleman K, et al. Deletion of chromosome 22q11.2
and outcome in patients with pulmonary atresia and ventricular septal
defect. Ann Thorac Surg. 2003;76(2):567-571.
45. Pierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis
for congenital heart defects: current knowledge: a scientific statement from
the American Heart Association Congenital Cardiac Defects Committee,
Council on Cardiovascular Disease in the Young: endorsed by the
American Academy of Pediatrics. Circulation. 2007;115(23):3015-3038.
46. Pierpont ME, Webb CL. Academy endorses AHA statements on genetic
basis, noninherited risk factors for congenital heart defects. AAP
News. 2007;28(8):39-39.
47. Frohn-Mulder IM, Wesby Swaay E, Bouwhuis C, et al. Chromosome
22q11 deletions in patients with selected outflow tract malformations. Genet
Couns. 1999;10(1):35-41.
48. Lewin MB, Lindsay EA, Jurecic V, Goytia V, Towbin JA, Baldini
A. A genetic etiology for interruption of the aortic arch type B. Am
J Cardiol. 1997;80(4):493-497.
49. McElhinney DB, Driscoll DA, Levin ER, Jawad AF, Emanuel BS,
Goldmuntz E. Chromosome 22q11 deletion in patients with ventricular
septal defect: frequency and associated cardiovascular anomalies. Pediatrics. 2003;112(6):e472-e476.
50. Takahashi K, Kido S, Hoshino K, Ogawa K, Ohashi H, Fukushima
Y. Frequency of a 22q11 deletion in patients with conotruncal cardiac
malformations: a prospective study. Eur J Pediatr. 1995;154(11):878-881.
51. Iserin L, de Lonlay P, Viot G, et al. Prevalence of the
microdeletion 22q11 in newborn infants with congenital conotruncal
cardiac anomalies. Eur J Pediatr. 1998;157(11):881-884.
52. Momma K, Ando M, Matsuoka R. Truncus arteriosus communis
associated with chromosome 22q11 deletion. J Am Coll Cardiol. 1997;30(4):1067-1071.
53. McElhinney DB, Clark BJ III, Weinberg PM, et al. Association
of chromosome 22q11 deletion with isolated anomalies of aortic arch
laterality and branching. J Am Coll Cardiol. 2001;37(8):2114-2119.
54. Momma K, Kondo C, Matsuoka R. Tetralogy of Fallot with pulmonary
atresia associated with chromosome 22q11 deletion. J Am
Coll Cardiol. 1996;27(1):198-202.
55. Johnson MC, Strauss AW, Dowton SB, et al. Deletion within chromosome
22 is common in patients with absent pulmonary valve syndrome. Am
J Cardiol. 1995;76(1):66-69.
56. Greenberg F. DiGeorge syndrome: an historical review of clinical
and cytogenetic features. J Med Genet. 1993;30(10):803-806.
57. Scambler PJ. The 22q11 deletion syndromes. Hum Mol
Genet. 2000;9(16):2421-2426.
58. Novak RW, Robinson HB. Coincident DiGeorge anomaly and renal
agenesis and its relation to maternal diabetes. Am J Med
Genet. 1994;50(4): 311-312.
59. Digilio MC, Angioni A, De Santis M, et al. Spectrum of clinical
variability in familial deletion 22q11.2: from full manifestation
to extremely mild clinical anomalies. Clin Genet. 2003;63(4):308-313.
60. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice
mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286-291.
61. Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny
in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410(6824):97-101.
62. Baldini A. Dissecting contiguous gene defects: TBX1. Curr
Opin Genet Dev. 2005;15(3):279-284.
63. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in
human del22q11.2 syndrome. Lancet. 2003;362(9393):1366-1373.
64. Stalmans I, Lambrechts D, De Smet F, et al. VEGF: a modifier
of the del22q11 (DiGeorge) syndrome? Nat Med. 2003;9(2):173-182.
65. Eronen M, Peippo M, Hiippala A, et al. Cardiovascular manifestations
in 75 patients with Williams syndrome. J Med Genet. 2002;39(8):554-558.
66. Kececioglu D, Kotthoff S, Vogt J. Williams-Beuren syndrome:
a 30-year follow-up of natural and postoperative course. Eur
Heart J. 1993;14(11):1458-1464.
67. Wessel A, Pankau R, Kececioglu D, Ruschewski W, Bursch JH. Three
decades of follow-up of aortic and pulmonary vascular lesions in
the Williams-Beuren syndrome. Am J Med Genet. 1994;52(3):297-301.
68. O’Connor WN, Davis JB Jr, Geissler R, Cottrill CM,
Noonan JA, Todd EP. Supravalvular aortic stenosis: clinical and
pathologic observations in six patients. Arch Pathol Lab
Med. 1985;109 (2):179-185.
69. Bird LM, Billman GF, Lacro RV, et al. Sudden death in Williams
syndrome: report of ten cases. J Pediatr. 1996;129(6):926-931.
70. Wu YQ, Nickerson E, Shaffer LG, Keppler-Noreuil K, Muilenburg
A. A case of Williams syndrome with a large, visible cytogenetic
deletion. J Med Genet. 1999;36(12):928-932.
71. Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at
the elastin locus in a developmental disorder, Williams syndrome. Nat
Genet. 1993;5 (1):11-16.
72. Osborne LR, Soder S, Shi XM, et al. Hemizygous deletion
of the syntaxin 1A gene in individuals with Williams syndrome. Am
J Hum Genet. 1997;61(2):449-452.
73. Nickerson E, Greenberg F, Keating MT, McCaskill C, Shaffer LG.
Deletions of the elastin gene at 7q11.23 occur in approximately 90% of
patients with Williams syndrome. Am J Hum Genet. 1995;56(5):1156-1161.
74. Tassabehji M, Metcalfe K, Fergusson WD, et al. LIM-kinase deleted
in Williams syndrome. Nat Genet. 1996;13(3):272-273.
75. Ewart AK, Jin W, Atkinson D, Morris CA, Keating MT. Supravalvular
aortic stenosis associated with a deletion disrupting the elastin
gene. J Clin Invest. 1994;93(3):1071-1077.
76. Tassabehji M, Hammond P, Karmiloff-Smith A, et al. GTF2IRD1 in
craniofacial development of humans and mice. Science. 2005;310(5751):1184-1187.
77. Frangiskakis JM, Ewart AK, Morris CA, et al. LIM-kinase1 hemizygosity
implicated in impaired visuospatial constructive cognition. Cell. 1996;86(1):59-69.
78. Noonan JA. Noonan syndrome: an update and review for the
primary pediatrician. Clin Pediatr. 1994;33(9):548-555.
79. Marino B, Digilio MC, Toscano A, Giannotti A, Dallapiccola
B. Congenital heart diseases in children with Noonan syndrome: an
expanded cardiac spectrum with high prevalence of atrioventricular
canal. J Pediatr. 1999;135(6):703-706.
80. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11,
encoding the protein tyrosine phosphatase SHP-2,
cause Noonan syndrome. Nat Genet. 2001;29(4):465-468.
81. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function
mutations in SOS1 cause Noonan syndrome. Nat
Genet. 2007;39(1):70-74.
82. Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations
cause Noonan syndrome. Nat Genet. 2006;38(3):331-336.
83. Tartaglia M, Pennacchio LA, Zhao C, et al. Gain-of-function SOS1 mutations
cause a distinctive form of Noonan syndrome. Nat Genet. 2007;39(1):75-79.
84. Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-function RAF1 mutations
cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat
Genet. 2007;39(8):1007-1012.
85. Razzaque MA, Nishizawa T, Komoike Y, et al. Germline gain-of-function
mutations in RAF1 cause Noonan syndrome. Nat
Genet. 2007;39(8): 1013-1017.
86. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations
in Noonan syndrome: molecular spectrum, genotype-phenotype correlation,
and phenotypic heterogeneity. Am J Hum Genet. 2002;70(6):1555-1563.
87. Gelb BD, Tartaglia M. Noonan syndrome and related disorders:
dysregulated RAS-mitogen activated protein kinase signal transduction. Hum
Mol Genet. 2006;15(spec no. 2):R220-R226.
88. Lee JS, Tartaglia M, Gelb BD, et al. Phenotypic and genotypic characterisation
of Noonan-like/multiple giant cell lesion syndrome. J
Med Genet. 2005;42(2):e11.
89. St John Sutton MG, Tajik AJ, Giuliani ER, Gordon H, Su WP. Hypertrophic
obstructive cardiomyopathy and lentiginosis: a little known neural
ectodermal syndrome. Am J Cardiol. 1981;47(2):214-217.
90. Digilio MC, Sarkozy A, de Zorzi A, et al. LEOPARD syndrome:
clinical diagnosis in the first year of life. Am J Med Genet
A. 2006;140(7):740-746.
91. Digilio MC, Conti E, Sarkozy A, et al. Grouping of multiple-lentigines/LEOPARD
and Noonan syndromes on the PTPN11 gene. Am
J Hum Genet. 2002;71(2):389-394.
92. Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger
C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD
syndrome. J Med Genet. 2002;39(8):571-574.
93. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2)
mutations in LEOPARD syndrome have dominant negative, not activating,
effects. J Biol Chem. 2006;281(10):6785-6792.
94. Limongelli G, Sarkozy A, Pacileo G, et al. Genotype-phenotype
analysis and natural history of left ventricular hypertrophy in
LEOPARD syndrome. Am J Med Genet A. 2008;146(5):620-628.
95. Roberts A, Allanson J, Jadico SK, et al. The cardiofaciocutaneous
syndrome. J Med Genet. 2006 2006;43(11):833-842.
96. Lin AE, Grossfeld PD, Hamilton RM, et al. Further delineation
of cardiac abnormalities in Costello syndrome. Am J Med
Genet. 2002;111(2):115-129.
97. Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. Germline
mutations in genes within the MAPK pathway cause
cardio-facio-cutaneous syndrome. Science. 2006;311(5765):1287-1290.
98. Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations
in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38(3):294-296.
99. Aoki Y, Niihori T, Kawame H, et al. Germline mutations in HRAS
proto-oncogene cause Costello syndrome. Nat Genet. 2005;37(10):1038-1040.
100. McElhinney DB, Krantz ID, Bason L, et al. Analysis of cardiovascular
phenotype and genotype-phenotype correlation in individuals with
a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106(20):2567-2574.
101. Kamath BM, Spinner NB, Emerick KM, et al. Vascular anomalies
in Alagille syndrome: a significant cause of morbidity and mortality. Circulation. 2004;109(11):1354-1358.
102. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by
mutations in human Jagged1, which encodes a ligand
for Notch1. Nat Genet. 1997;16(3):243-251.
103. Warthen DM, Moore EC, Kamath BM, et al. Jagged1 (JAG1)
mutations in Alagille syndrome: increasing the mutation detection rate. Hum
Mutat. 2006;27(5):436-443.
104. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged1 gene
are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235-242.
105. Krantz ID, Rand EB, Genin A, et al. Deletions of 20p12
in Alagille syndrome: frequency and molecular characterization. Am
J Med Genet. 1997;70(1):80-86.
106. Loomes KM, Taichman DB, Glover CL, et al. Characterization
of Notch receptor expression in the developing mammalian heart and
liver. Am J Med Genet. 2002;112(2):181-189.
107. McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations
cause Alagille syndrome, a heterogeneous disorder of the Notch signaling
pathway. Am J Hum Genet. 2006;79(1):169-173.
108. Xue Y, Gao X, Lindsell CE, et al. Embryonic lethality and vascular
defects in mice lacking the Notch ligand Jagged1. Hum
Mol Genet. 1999;8(5):723-730.
109. Krantz ID, Smith R, Colliton RP, et al.
Jagged1 mutations
in patients ascertained with isolated congenital heart defects.
Am
J Med Genet. 1999; 84(1):56-60.
[PubMed: 10213047]
110. Eldadah ZA, Hamosh A, Biery NJ, et al. Familial tetralogy
of Fallot caused by mutation in the jagged1 gene. Hum
Mol Genet. 2001;10(2):163-169.
111. Holt M, Oram S. Familial heart disease with skeletal malformations.
Br
Heart J. 1960;22:236-242.
[PubMed: 14402857]
112. Elek C, Vitez M, Czeizel E. [Holt-Oram syndrome]. Orv
Hetil. 1991;132(2):73-74, 77-78.
113. Basson CT, Cowley GS, Solomon SD, et al. The clinical and
genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N
Engl J Med. 1994;330(13):885-891.
114. Newbury-Ecob RA, Leanage R, Raeburn JA, Young ID. Holt-Oram
syndrome: a clinical genetic study. J. Med. Genet. 1996;33(4):300-307.
115. Sletten LJ, Pierpont ME. Variation in severity of cardiac disease
in Holt-Oram syndrome. Am J Med Genet. 1996;65(2):128-132.
116. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause
limb and cardiac malformation in Holt-Oram syndrome. Nat
Genet. 1997;15(1):30-35.
117. Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome
is caused by mutations in TBX5, a member of the
Brachyury (T) gene family. Nat Genet. 1997;15(1):21-29.
118. McDermott DA, Bressan MC, He J, et al. TBX5 genetic
testing validates strict clinical criteria for Holt-Oram syndrome. Pediatr
Res. 2005;58(5): 981-986.
119. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations
cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443-447.
120. Moskowitz IPG, Kim JB, Moore ML, et al. A molecular pathway
including Id2, Tbx5, and Nkx2-5 required
for cardiac conduction system development. Cell. 2007;129(7):1365-1376.
121. Digilio MC, Marino B, Ammirati A, Borzaga U, Giannotti
A, Dallapiccola B. Cardiac malformations in patients with oral-facial-skeletal
syndromes: clinical similarities with heterotaxia. Am J
Med Genet. 1999;84(4):350-356.
122. Ruiz-Perez VL, Ide SE, Strom TM, et al. Mutations in a
new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat
Genet. 2000;24(3):283-286.
123. Ruiz-Perez VL, Stuart Tompson WJ, Helen Blair J, et al.
Mutations in two nonhomologous genes in a head-to-head configuration
cause Ellis-van Creveld syndrome. Am J Hum Genet. 2003;72(3):728-732.
124. Galdzicka M, Patnala S, Hirshman MG, et al. A new gene, EVC2,
is mutated in Ellis-van Creveld syndrome. Mol Genet Metab. 2002;77(4):291-295.
125. Tompson SW, Ruiz-Perez VL, Blair HJ, et al. Sequencing EVC and EVC2 identifies
mutations in two-thirds of Ellis-van Creveld syndrome patients. Hum
Genet. 2007;120(5):663-670.
126. Ruiz-Perez VL, Blair HJ, Rodriguez-Andres ME, et al. Evc
is a positive mediator of Ihh-regulated bone growth that localises
at the base of chondrocyte cilia. Development. 2007;134(16):2903-2912.
127. Hall BD. Choanal atresia and associated multiple anomalies. J
Pediatr. 1979;95(3):395-398.
128. Hittner HM, Hirsch NJ, Kreh GM, Rudolph AJ. Colobomatous
microphthalmia, heart disease, hearing loss, and mental retardationæa
syndrome.
J Pediatr Ophthalmol Strabismus. 1979;
16(2):122-128.
[PubMed: 458518]
129. Blake KD, Hartshorne TS, Lawand C, Dailor AN, Thelin JW.
Cranial nerve manifestations in CHARGE syndrome. Am J Med
Genet A. 2008;146(5):585-592.
130. Blake KD, Davenport SL, Hall BD, et al. CHARGE association:
an update and review for the primary pediatrician. Clin
Pediatr (Phila). 1998;37(3):159-173.
131. Alain V. Updated diagnostic criteria for CHARGE syndrome:
a proposal. Am J Med Genet. 2005; 133A(3):306-308.
132. Tellier AL, Cormier-Daire V, Abadie V, et al. CHARGE syndrome:
report of 47 cases and review. Am J Med Genet. 1998;76(5):402-409.
133. Lalani SR, Safiullah AM, Fernbach SD, et al. Spectrum of CHD7 mutations
in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am
J Hum Genet. 2006;78(2):303-314.
134. Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations
in a new member of the chromodomain gene family cause CHARGE syndrome. Nat
Genet. 2004;36(9):955-957.
135. Jongmans MC, Admiraal RJ, van der Donk KP, et al. CHARGE
syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J
Med Genet. 2006;43(4):306-314.
136. Aramaki M, Udaka T, Kosaki R, et al. Phenotypic spectrum
of CHARGE syndrome with CHD7 mutations. J
Pediatr. 2006;148(3):410-414.
137. Sanlaville D, Etchevers HC, Gonzales M, et al. Phenotypic
spectrum of CHARGE syndrome in fetuses with CHD7 truncating
mutations correlates with expression during human development. J
Med Genet. 2006;43(3):211-217.
138. Char F. Peculiar facies with short philtrum, duck-bill
lips, ptosis and low-set earsæa new syndrome? Birth
Defects Orig Artic Ser. 1978;14 (6B):303-305.
139. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause
Char syndrome, a familial form of patent ductus arteriosus. Nat
Genet. 2000;25(1): 42-46.
140. Moser M, Ruschoff J, Buettner R. Comparative analysis of AP-2
alpha and AP-2 beta gene expression during murine embryogenesis. Dev
Dyn. 1997;208(1):115-124.
141. Brueckner M, D’Eustachio P, Horwich AL. Linkage
mapping of a mouse gene, iv, that controls left-right
asymmetry of the heart and viscera. Proc Natl Acad Sci U
S A. 1989;86(13):5035-5038.
142. Aylsworth AS. Clinical aspects of defects in the determination
of laterality. Am J Med Genet. 2001;101(4):345-355.
143. Splitt MP, Burn J, Goodship J. Defects in the determination of
left-right asymmetry. J Med Genet. 1996;33(6):498-503.
144. Lin AE, Ticho BS, Houde K, Westgate MN, Holmes LB. Heterotaxy:
associated conditions and hospital-based prevalence in newborns. Genet
Med. 2000;2(3):157-172.
145. Gebbia M, Ferrero GB, Pilia G, et al. X-linked situs abnormalities
result from mutations in ZIC3. Nat Genet. 1997;17(3):305-308.
146. Ware SM, Peng J, Zhu L, et al. Identification and functional
analysis of ZIC3 mutations in heterotaxy and related
congenital heart defects. Am J Hum Genet. 2004;74(1):93-105.
147. Bamford RN, Roessler E, Burdine RD, et al. Loss-of-function
mutations in the EGF-CFC gene CFC1 are associated
with human left-right laterality defects. Nat Genet. 2000;26(3):365-369.
148. Kosaki K, Bassi MT, Kosaki R, et al. Characterization and mutation
analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated
in left-right axis development. Am J Hum Genet. 1999;64(3):712-721.
149. Kosaki R, Gebbia M, Kosaki K, et al. Left-right axis malformations
associated with mutations in ACVR2B, the gene for
human activin receptor type IIB. Am J Med Genet. 1999;82(1):70-76.
150. Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused
by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337-339.
151. Pyeritz RE, McKusick VA. The Marfan syndrome: diagnosis
and management. N Engl J Med. 1979;300(14):772-777.
152. Faivre L, Collod-Beroud G, Loeys BL, et al. Contribution
of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies:
an international study of 1009 probands. J Med Genet. 2008;jmg.2007.056382.
153. Hwa J, Richards JG, Huang H, et al. The natural history
of aortic dilatation in Marfan syndrome. Med J Aust. 1993;158(8):558-562.
154. Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen
L. Mutations in the fibrillin gene responsible for dominant ectopia
lentis and neonatal Marfan syndrome. Nat Genet. 1994;6(1):64-69.
155. Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered
cardiovascular, craniofacial, neurocognitive and skeletal development
caused by mutations in TGFBR1 or TGFBR2. Nat
Genet. 2005;37(3):275-281.
156. Mizuguchi T, Collod-Beroud G, Akiyama T, et al. Heterozygous TGFBR2 mutations
in Marfan syndrome. Nat Genet. 2004;36(8):855-860.
157. Loeys BL, Schwarze U, Holm T, et al. Aneurysm syndromes
caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788-798.
158. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease
caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108-111.
159. Kasahara H, Lee B, Schott JJ, et al. Loss of function and inhibitory
effects of human CSX/NKX2.5 homeoprotein
mutations associated with congenital heart disease. J Clin
Invest. 2000;106(2):299-308.
160. Sarkozy A, Conti E, Neri C, et al. Spectrum of atrial septal defects
associated with mutations of NKX2.5 and GATA4 transcription
factors. J Med Genet. 2005;42(2):e16.
161. Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways
and congenital heart disease: loss of ventricular myocyte lineage
specification leads to progressive cardiomyopathy and complete heart
block. Cell. 2004;117(3):373-386.
162. Elliott DA, Kirk EP, Yeoh T, et al. Cardiac homeobox gene NKX2-5 mutations
and congenital heart disease: associations with atrial septal defect
and hypoplastic left heart syndrome. J Am Coll Cardiol. 2003;41(11):2072-2076.
163. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations
in the cardiac transcription factor NKX2.5 affect
diverse cardiac developmental pathways. J Clin Invest. 1999;104(11):1567-1573.
164. McElhinney DB, Geiger E, Blinder J, Woodrow Benson D, Goldmuntz
E. NKX2.5 mutations in patients with congenital
heart disease. J Am Coll Cardiol. 2003;42(9):1650-1655.
165. Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz
E. GATA4 sequence variants in patients with congenital
heart disease. J Med Genet. 2007;44(12):779-783.
166. Rajagopal SK, Ma Q, Obler D, et al. Spectrum of heart disease
associated with murine and human GATA4 mutation. J
Mol Cell Cardiol. 2007;43(6):677-685.
167. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause
aortic valve disease. Nature. 2005;437(7056):270-274.