1. Sandison AT. A form of lipoidosis of the adrenal cortex
in an infant.
Arch Dis Child. 1955;30:538-541.
[PubMed: 13275986]
2. Prader A, Siebenmann RE. Nebenniereninsuffizienz bie kongenitaler
Lipoidhyperplasie der Nebennieren.
Helv Paediatr Acta. 1957;12:569-595.
[PubMed: 13512944]
3. Kirkland RT, Kirkland JL, Johnson CM, Horning MG, Librik
L, Clayton GW. Congenital lipoid adrenal hyperplasia in an eight-year-old
phenotypic female.
J Clin Endocrinol Metab. 1973;36:488-496.
[PubMed: 4685387]
4. Hauffa BP, Miller WL, Grumbach MM, Conte FA, Kaplan SL. Congenital
adrenal hyperplasia due to deficient cholesterol side-chain cleavage
activity (20,22 desmolase) in a patient treated for 18 years.
Clin
Endocrinol (Oxf). 1985;23:481-493.
[PubMed: 3841304]
5. Saenger P, Klonari Z, Black SM, et al. Prenatal diagnosis
of congenital lipoid adrenal hyperplasia.
J Clin Endocrinol
Metab. 1995;80:200-205.
[PubMed: 7829612]
6. Tee MK, Lin D, Sugawara T, et al. T → A
transversion 11 bp from a splice acceptor site in the gene for steroidogenic
acute regulatory protein causes congenital lipoid adrenal hyperplasia.
Hum
Mol Genet. 1995;4:2299-2305.
[PubMed: 8634702]
7. Voutilainen R, Miller WL. Developmental expression of genes
for the steroidogenic enzymes P450scc (20,22 desmolase), P450c17
(17α-hydroxylase/17,20 lyase) and P450c21
(21-hydroxylase) in the human fetus.
J Clin Endocrinol Metab. 1986;63:1145-1150.
[PubMed: 3489728]
8.Chen X, Baker BY, Abduljabbar MA, Miller WL. A genetic isolate
of congenital lipoid adrenal hyperplasia with atypical clinical
findings.
J Clin Endocrinol Metab. 2005;90:835-840.
[PubMed: 15546900]
9. Bose HS, Pescovitz OH, Miller WL. Spontaneous feminization
in a 46,XX female patient with congenital lipoid adrenal hyperplasia
caused by a homozygous frame-shift mutation in the steroidogenic
acute regulatory protein.
J Clin Endocrinol Metab. 1997;82:1511-1515.
[PubMed: 9141542]
10. Fujieda K, Tajima T, Nakae J, et al. Spontaneous puberty
in 46,XX subjects with congenital lipoid adrenal hyperplasia.
J
Clin Invest. 1997;99:1265-1271.
[PubMed: 9077535]
11. Nakae J, Tajima T, Sugawara T, et al. Analysis of the steroidogenic
acute regulatory protein (StAR) gene in Japanese patients with congenital
lipoid adrenal hyperplasia.
Hum Mol Genet. 1997;6:571-576.
[PubMed: 9097960]
12. Yoo HW, Kim GH. Molecular and clinical characterization
of Korean patients with congenital lipoid adrenal hyperplasia.
J
Pediatr Endocrinol Metab. 1998;11:707-711.
[PubMed: 9829224]
13. Bose HS, Sato S, Aisenberg J, Shalev SA, Matsuo N, Miller
WL. Mutations in the steroidogenic acute regulatory protein (StAR)
in six patients with congenital lipoid adrenal hyperplasia.
J
Clin Endocrinol Metab. 2000;85:3636-3639.
[PubMed: 11061515]
14. Flück CE, Maret A, Mallet D, et al. A novel mutation
L260P of the steroidogenic acute regulatory protein gene in three
unrelated patients of Swiss ancestry with congenital lipoid adrenal
hyperplasia.
J Clin Endocrinol Metab. 2005;90:5304-5308.
[PubMed: 21337573]
15. Gassner HL, Toppari J, Quinteiro Gonzalez S, Miller WL.
Near-miss apparent SIDS from adrenal crisis.
J Pediatr. 2004;145:178-183.
[PubMed: 15289763]
16. Baker BY, Lin L, Kim CJ, et al. Non-classic congenital lipoid
adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory
protein with very late presentation and normal male genitalia.
J
Clin Endocrinol Metab. 2006;91:4781-4785.
[PubMed: 16968793]
17. Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A
mutation in the gene encoding steroidogenic factor-1 causes XY sex
reversal and adrenal failure in humans. Nat Genet. 1999;22(2):125-126.
18. Biason-Lauber A, Schoenle EJ. Apparently normal ovarian
differentiation in a prepubertal girl with transcriptionally inactive
steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical
insufficiency.
Am J Hum Genet. 2000;67:1563-1568.
[PubMed: 11038323]
19. Achermann JC, Ozisik G, Ito M, et al. Gonadal determination
and adrenal development are regulated by the orphan nuclear receptor
steroidogenic factor-1, in a dose-dependent manner.
J Clin
Endocrinol Metab. 2002;87:1829-1833.
[PubMed: 11932325]
20. Bongiovanni AM, Kellenbenz G. The adrenogenital syndrome
with deficiency of 3β-hydroxysteroid dehydrogenase.
J
Clin Invest. 1962;41:2086-2092.
[PubMed: 13968789]
21. Lorence MC, Corbin CJ, Kamimura N, Mahendroo MS, Mason JI.
Structural analysis of the gene encoding human 3β-hydroxysteroid
dehydrogenase/Δ
5 → Δ
4 isomerase.
Mol
Endocrinol. 1990;4:1850-1855.
[PubMed: 2082186]
22. Rhéaume E, Lachance Y, Zhao H, et al. Structure
and expression of a new cDNA encoding the major 3βâhydroxysteroid
dehydrogenase/Δ
5-Δ
4 isomerase.
Mol
Endocrinol. 1991;5:1147-1157.
[PubMed: 21337649]
23. Rhéaume E, Simard J, Morel Y, et al. Congenital
adrenal hyperplasia due to point mutations in the type II 3β-hydroxysteroid
dehydrogenase gene.
Nat Genet. 1992;1:239-245.
[PubMed: 21337649]
24. Chang YT, Kappy MS, Iwamoto K, Wang X, Pang S. Mutations
in the type II 3β-hydroxysteroid dehydrogenase
gene in a patient with classic salt-wasting 3β-HSD
deficiency congenital adrenal hyperplasia.
Pediatr Res. 1993;34:698-700.
[PubMed: 8284113]
25. Simard J, Rhéaume E, Sanchez R, et al. Molecular
basis of congenital adrenal hyperplasia due to 3β-hydroxysteroid
dehydrogenase deficiency.
Mol Endocrinol. 1993;7:716-728.
[PubMed: 8316254]
26. Moisan AM, Ricketts ML, Tardy V, et al. New insight into
the molecular basis of 3β-hydroxysteroid dehydrogenase
deficiency: identification of eight mutations in the HSD3B2 gene
in eleven patients from seven new families and comparison of the
functional properties of twenty-five mutant enzymes. J Clin
Endocrinol Metab. 1999;84(12):4410-4425.
27. Cara JF, Moshang T Jr, Bongiovanni AM, Marx BS. Elevated
17-hydroxy-progesterone and
testosterone in a newborn with 3β-hydroxysteroid
dehydrogenase deficiency.
N Engl J Med. 1985;313:618-621.
[PubMed: 3160950]
28. Pang S, Carbunaru G, Haider A, et al. Carriers for type
II 3β-hydroxysteroid dehydrogenase (
HSD3B2)
deficiency can only be identified by
HSD3B2 genotype
study and not by hormone test.
Clin Endocrinol. 2003;58:323-331.
[PubMed: 12608938]
29. Chang YT, Zhang L, Alkaddour HS, et al. Absence of molecular
defect in the type II 3β-hydroxysteroid dehydrogenase
(3β-HSD) gene in premature pubarche children and
hirsute female patients with moderately decreased adrenal 3β-HSD
activity.
Pediatr Res. 1995;37:820-824.
[PubMed: 7651769]
30. Sakkal-Alkaddour H, Zhang L, Yang X, Chang YT, Kappy M,
Slover RS. Studies of 3β-hydroxysteroid dehydrogenase
genes in infants and children manifesting premature pubarche and
increased adrenocorticotropin-stimulated Δ
5-steroid
levels.
J Clin Endocrinol Metab. 1996;81:3961-3965.
[PubMed: 8923844]
31. Pang S. The molecular and clinical spectrum of 3β-hydroxysteroid
dehydrogenase deficiency disorder.
Trends Endocrinol Metab. 1998;9:82-86.
[PubMed: 18406247]
32. Lutfallah C, Wang W, Mason JI, et al. Newly proposed hormonal
criteria via genotypic proof for type II 3β-hydroxysteroid
dehydrogenase deficiency.
J Clin Endocrinol Metab. 2002;87:2611-2622.
[PubMed: 12050224]
33. Rosenfield RL, Rich BH, Wolfsdorf JI, et al. Pubertal presentation
of congenital Δ
5-3β hydroxysteroid
dehydrogenase deficiency.
J Clin Endocrinol Metab. 1980;51:345-353.
[PubMed: 6249838]
34. Pang S, Levine LS, Stoner E, et al. Nonsalt-losing congenital
adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase
deficiency with normal glomerulosa function.
J Clin Endocrinol
Metab. 1983;56:808-818.
[PubMed: 6300166]
35. Pang SY, Lerner AJ, Stoner E, et al. Late-onset adrenal
steroid 3β-hydroxysteroid dehydrogenase deficiency.
I. A cause of hirsutism in pubertal and postpubertal women.
J
Clin Endocrinol Metab. 1985;60:428-439.
[PubMed: 2982896]
36. Auchus RJ. The genetics, pathophysiology, and management
of human deficiencies of P450c17.
Endocrinol Metab Clin
North Am. 2001;30:101-119.
[PubMed: 11344930]
37. Costa-Santos M, Kater CE, Auchus RJ. Two prevalent CYP17
mutations and genotype-phenotype correlations in 24 Brazilian patients
with 17-hydroxylase deficiency.
J Clin Endocrinol Metab. 2004;89:49-60.
[PubMed: 14715827]
38. Voutilainen R, Tapanainen J, Chung B, Matteson KJ, Miller
WL. Hormonal regulation of P450scc (20,22-desmolase) and P450c17
(17α-hydroxylase/17,20-lyase) in cultured
human granulosa cells.
J Clin Endocrinol Metab. 1986;63:202-207.
[PubMed: 3011839]
39. Scaroni C, Opocher G, Mantero F. Renin-angiotensin-aldosterone
system: a long-term follow-up study in 17α-hydroxylase
deficiency syndrome. Hypertension (Clin Exp Theory Pract). 1986;A8:773-780.
40. Biglieri EG, Herron MA, Brust N. 17α-Hydroxylation
deficiency in man. J Clin Invest. 1966;15:1945-1954.
41. Imai T, Yanase T, Waterman MR, Simpson ER, Pratt JJ. Canadian
Mennonites and individuals residing in the Friesland region of the
Netherlands share the same molecular basis of 17α-hydroxylase
deficiency.
Hum Genet. 1992;89:95-96.
[PubMed: 1577471]
42. Lam CW, Arlt W, Chan CK, et al. Mutation of proline 409
to arginine in the meander region of cytochrome P450c17 causes severe
17α-hydroxylase deficiency.
Mol Genet Metab. 2001;72:254-259.
[PubMed: 11243732]
43. Miura K, Yasuda K, Yanase T, et al. Mutation of cytochrome
P-45017 α gene (CYP17) in a Japanese
patient previously reported as having glucocorticoid-responsive
hyperaldosteronism: with a review of Japanese patients with mutations
of CYP17. J Clin Endocrinol Metab. 1996;81(10):3797-3801.
44. Geller DH, Auchus RJ, Mendonça BB, Miller WL. The
genetic and functional basis of isolated 17,20 lyase deficiency.
Nat
Genet. 1997;17:201-205.
[PubMed: 9326943]
45. Geller DH, Auchus RJ, Miller WL.
P450c17 mutations
R347H and R358Q selectively disrupt 17,20-lyase activity by disrupting
interactions with P450 oxidoreductase and cytochrome
b5.
Mol
Endocrinol. 1999;13:167-175.
[PubMed: 9892022]
46. Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, et al. Results
of screening 1.9 million Texas newborns for 21-hydroxylase-deficient
congenital adrenal hyperplasia.
Pediatrics. 1998;101:583-590.
[PubMed: 9521938]
47. Merke DP, Bornstein SR. Congenital adrenal hyperplasia.
Lancet. 2005;365:2125-2136.
[PubMed: 15964450]
48. Merke DP, Chrousos GP, Eisenhofer G, et al. Adrenomedullary
dysplasia and hypofunction in patients with classic 21-hydroxylase
deficiency.
N Engl J Med. 2000;343:1362-1368.
[PubMed: 11070100]
49. Solish SB, Goldsmith MA, Voutilainen R, Miller WL. Molecular
characterization of a Leydig cell tumor presenting as congenital
adrenal hyperplasia.
J Clin Endocrinol Metab. 1989;69:1148-1152.
[PubMed: 2555382]
50. Gourmelen M, Gueux B, Pham-Huu-Trung MT, Fiet J, Raux-Demany
MC, Girard F. Detection of heterozygous carriers for 21-hydroxylase
deficiency by plasma 21-deoxycortisol measurement.
Acta
Endocrinol. 1987;116:507-512.
[PubMed: 2827419]
51. Migeon CJ, Rosenwask Z, Lee PA, Urban MD, Bias WB. The attenuated
form of congenital adrenal hyperplasia as an allelic form of 21-hydroxylase
deficiency.
J Clin Endocrinol Metab. 1980;51:647-649.
[PubMed: 6251108]
52. Chrousos GP, Loriaux DL, Mann DL, Cutler GB. Late-onset
21-hydroxylase deficiency mimicking idiopathic hirsutism or polycystic
ovarian disease: an allelic variant of congenital virilizing adrenal hyperplasia
with a milder enzymatic defect.
Ann Intern Med. 1982;96:143-148.
[PubMed: 6977282]
53. Kohn B, Levine LS, Pollack MS, et al. Late-onset steroid
21-hydroxylase deficiency: a variant of classical congenital adrenal
hyperplasia. J Clin Endocrinol Metab. 1982;51:817-827.
54. Levine LS, Dupont B, Lorenzen F, et al. Genetic and hormonal
characterization of the cryptic 21-hydroxylase deficiency.
J
Clin Endocrinol Metab. 1981;53:1193-1198.
[PubMed: 6271801]
55. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A,
New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency.
Am
J Hum Genet. 1985;37:650-667.
[PubMed: 9556656]
56. Sherman SL, Aston CE, Morton NE, Speiser PW, New MI. A segregation
and linkage study of classical and nonclassical 21-hydroxylase deficiency.
Am
J Hum Genet. 1988;42:830-838.
[PubMed: 3259403]
57. Dumic M, Brkljacic L, Speiser PW, et al. An update on the
frequency of nonclassic deficiency of adrenal 21-hydroxylase in
the Yugoslav population.
Acta Endocrinol. 1990;122:703-710.
[PubMed: 2375234]
58. Chetkowski RJ, DeFazio J, Shamonki I, Judd HL, Chang RJ.
The incidence of the late-onset congenital adrenal hyperplasia due
to 21-hydroxylase deficiency among hirsute women.
J Clin
Endocrinol Metab. 1984;58:595-598.
[PubMed: 6321532]
59. Nebert DW, Nelson DR, Coon MJ, et al. The
P450 superfamily:
update on new sequences, gene mapping, and recommended nomenclature.
DNA
Cell Biol. 1991;10:1-14.
[PubMed: 1991046]
60. Carroll MC, Campbell RD, Porter RR. Mapping of steroid 21-hydroxylase
genes to complement component
C4 genes in HLA,
the major histocompatibility locus in man.
Proc Natl Acad
Sci U S A. 1985;82:521-525.
[PubMed: 3871526]
61. White PC, Grossberger D, Onufer BJ, et al. Two genes encoding
steroid 21-hydroxylase are located near the genes encoding the fourth
component of complement in man.
Proc Natl Acad Sci U S A. 1985;82:1089-1093.
[PubMed: 2983330]
62. Bristow J, Gitelman SE, Tee MK, Staels B, Miller WL. Abundant
adrenal-specific transcription of the human
P450c21A “pseudogene.”
J
Biol Chem. 1993;268:12919-12924.
[PubMed: 7685353]
63. Partanen J, Koskimies S, Sipila I, Lipsanen V. Major histocompatibility-complex
gene markers and restriction fragment analysis of steroid 21-hydroxylase
(
CYP21) and complement
C4 genes
in classical adrenal hyperplasia patients in a single population.
Am
J Hum Genet. 1989;44:660-670.
[PubMed: 2565078]
64. Dupont B, Pollack MS, Levine LS, O’Neill GJ, Hawkins
BR, New MI. Congenital adrenal hyperplasia: joint report from the
eighth International Histocompatibility Workshop. In: Terasaki P,
ed. Histocompatibility Testing 1980. Berlin: Springer
Verlag; 1981:693-706.
65. Fleischnick E, Awdeh ZL, Raum D, et al. Extended MHC haplotypes
in 21-hydroxylase deficiency congenital adrenal hyperplasia: shared
genotypes in unrelated patients. Lancet. 1983;i:152-156.
66. Holler W, Scholz S, Knorr D, Bidlingmaier F, Keller E, Ekkehard
DA. Genetic differences in the salt-wasting, simple virilizing,
and nonclassical types of congenital adrenal hyperplasia.
J
Clin Endocrinol Metab. 1985;60:757-763.
[PubMed: 2982907]
67. Pollack MS, Levine LS, O’Neill GL. HLA linkage
and B14, DR1, BfS haplotype association with the genes for late
onset and cryptic 21-hydroxylase deficiency.
Am J Hum Genet. 1981;33:540-550.
[PubMed: 6789674]
68. Speiser PW, New MI, White P. Molecular genetic analysis
of nonclassical steroid 21-hydroxylase deficiency associated with
HLA-B14DR1.
N Engl J Med. 1988;319:19-23.
[PubMed: 3260007]
69. Morel Y, Andre J, Uring-Lambert B, et al. Rearrangements
and point mutations of
P450c21 genes are distinguished
by five restriction endonuclease haplotypes identified by a new
probing strategy in 57 families with congenital adrenal hyperplasia.
J
Clin Invest. 1989;83:527-536.
[PubMed: 2913051]
70. Rosenbloom NR, Smith DW. Varying expression for salt-losing
in related patients with congenital adrenal hyperplasia.
Pediatrics. 1966;38:215-219.
[PubMed: 5944156]
71. Stoner E, DiMartina J, Kuhnle U, Levine LS, Oberfield SE,
New MI. Is salt-wasting in congenital adrenal hyperplasia genetic?
Clin
Endocrinol. 1986;24:9-20.
[PubMed: 3486728]
72.Morel Y, David M, Forest MG, et al. Gene conversions and
rearrangements cause discordance between inheritance of forms of
21-hydroxylase deficiency and HLA types.
J Clin Endocrinol
Metab. 1989;68:592-599.
[PubMed: 2783935]
73. Sinnott PJ, Dyer PA, Price DA, Harris R, Strachan T. 21-Hydroxylase
deficiency families with HLA identical affected and unaffected sibs.
J
Med Genet. 1989;26:10-17.
[PubMed: 2783976]
74. Law SKA, Dodds AW, Porter RR. A comparison of the properties
of two classes, C4A and C4B, of the human complement component C4.
EMBO
J. 1984;3:1819-1823.
[PubMed: 6332733]
75. Tee MK, Babalola GO, Aza-Blanc P, Speek M, Gitelman SE,
Miller WL. A promoter within intron 35 of the human
C4A gene
initiates adrenal-specific transcription of a 1kb RNA: location
of a cryptic CYP21 promoter element?
Hum Mol Genet. 1995;4:2109-2116.
[PubMed: 8589688]
76. Wijesuriya SD, Zhang G, Dardis A, Miller WL. Transcriptional
regulatory elements of the human gene for cytochrome P450c21 (steroid
21-hydroxylase) lie within intron 35 of the linked
C4B gene.
J
Biol Chem. 1999;274:38097-38106.
[PubMed: 10608879]
77. Gitelman SE, Bristow J, Miller WL. Mechanism and consequences
of the duplication of the human
C4/
P450c21/gene
X locus.
Mol Cell Biol. 1992;12:2124-2134.
[PubMed: 1373808]
78. Bristow J, Tee MK, Gitelman SE, Mellon SH, Miller WL. Tenascin-X:
a novel extracellular matrix protein encoded by the human
XB gene
overlapping
P450c21B.
J Cell Biol. 1993;122:265-278.
[PubMed: 7686164]
79. Burch GH, Bedolli MA, McDonough S, Rosenthal SM, Bristow
J. Embryonic expression of tenascin-X suggests a role in limb, muscle,
and heart development.
Dev Dynamics. 1995;203:491-504.
[PubMed: 7496040]
80. Burch GH, Gong Y, Liu W, et al. Tenascin-X deficiency is
associated with Ehlers-Danlos syndrome.
Nat Genet. 1997;17:104-108.
[PubMed: 9288108]
81. Elefteriou F, Exposito JY, Garrone R, Lethias C. Characterization
of the bovine Tenascin-X.
J Biol Chem. 1997;272:22866-22874.
[PubMed: 9278449]
82. Lethias C, Carisey A, Comte J, Cluzel C, Exposito J-Y. A
model of tenascin-X integration within the collagenous network.
FEBS
Lett. 2006;580:6281-6285.
[PubMed: 17078949]
83. Schalkwijk J, Zweers MC, Steijlen PM, et al. A recessive
form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency.
N
Engl J Med. 2001;345:1167-1175.
[PubMed: 11642233]
84. White PC, Tusie-Luna MT, New MI, Speiser PW. Mutations in
steroid 21-hydroxylase (CYP21).
Hum Mutat. 1994;3:373-378.
[PubMed: 8081391]
85. Matteson KJ, Phillips JA, III, Miller WL, et al.
P450XXI (steroid
21-hydroxylase) gene deletions are not found in family studies of
congenital adrenal hyperplasia.
Proc Natl Acad Sci U S A. 1987;84:5858-5862.
[PubMed: 3497399]
86. Miller WL. Gene conversions, deletions, and polymorphisms
in congenital adrenal hyperplasia.
Am J Hum Genet. 1988;42:4-7.
[PubMed: 3276177]
87. Higashi Y, Hiromasa T, Tanae A, et al. Effects of individual
mutations in the
P-450(C21) pseudogene on P-450(C21)
activity and their distribution in patient genomes of congenital
steroid 21-hydroxylase deficiency.
J Biochem. 1991;109:638-644.
[PubMed: 1869518]
88. Chiou SH, Hu MC, Chung B-C. A missense mutation of Ile172 → Asn
or Arg356 → Trp causes steroid
21-hydroxylase deficiency. J Biol Chem. 1990;256:3549-3552.
89. Auchus RJ, Miller WL. Molecular modeling of human
P450c17 (17α-hydroxylase/17,20-lyase):
insights into reaction mechanisms and effects of mutations.
Mol
Endocrinol. 1999;13:1169-1182.
[PubMed: 10406467]
90. Wedell A, Ritzen EM, Haglund-Stengler B, Luthman H. Steroid
21-hydroxylase deficiency: three additional mutated alleles and
establishment of phenotype–genotype relationships of common
mutations.
Proc Natl Acad Sci U S A. 1992;89:7232-7236.
[PubMed: 1496017]
91. Wedell A , Luthman H. Steroid 21-hydroxylase (
P450c21):
a new allele and spread of mutations through the pseudogene.
Hum
Mol Genet. 1993;91:236-240.
[PubMed: 8478006]
92. Wedell A, Luthman H. Steroid 21-hydroxylase deficiency:
two additional mutations in salt-wasting disease and rapid screening
of disease-causing mutations.
Hum Mol Genet. 1993;2:499-504.
[PubMed: 8518786]
93. Amor M, Parker KL, Globerman H, New MI, White PC. Mutation
in the
CYP21B gene (Ile-172-Asn) causes steroid
21-hydroxylase deficiency.
Proc Natl Acad Sci U S A. 1988;85:1600-1604.
[PubMed: 3257825]
94. Urabe K, Kimura A, Harada F, Iwanage T, Sasazuki T. Gene
conversion in steroid 21-hydroxylase genes.
Am J Hum Genet. 1990;46:1178-1186.
[PubMed: 1971153]
95. Helmburg A, Tusie-Luna M, Tabarelli M, Kofler R, White PC.
R339H and P453S: CYP21 mutations associated with
nonclassic steroid 21-hydroxylase deficiency that are not apparent
gene conversion. Mol Endocrinol. 1992;6:1318-1322.
96. Owerbach D, Sherman L, Ballard AL, Azziz R. Pro453 to Ser
mutation in
CYP21 is associated with non-classic
steroid 21-hydroxylase deficiency.
Mol Endocrinol. 1992;6:1211-1215.
[PubMed: 1406699]
97. Hsu LC, Hu MC, Cheng HC, Lu JC, Chung B. The N-terminal
hydrophobic domain of P450c21 is required for membrane insertion
and enzyme stability.
J Biol Chem. 1993;268:14682.
[PubMed: 8325846]
98. Morel Y, Bristow J, Gitelman SE, Miller WL. Transcript encoded
on the opposite strand of the human steroid 21-hydroxylase/complement
component/
C4 gene locus.
Proc
Natl Acad Sci U S A. 1989;86:6582-6586.
[PubMed: 2475872]
99. Laue L, Cutler GB Jr. 21-Hydroxylase deficiency: overview
of treatment. The Endocrinologist. 1992;2:291.
100. Styne DM, Richards GE, Bell JJ, et al. Growth patterns
in congenital adrenal hyperplasia—correlation of glucocorticoid
therapy with stature. In: Lee P, Plotnick L, Kowarski A, Migeon
C, eds. Congenital Adrenal Hyperplasia. Baltimore:
University Park Press; 1977:247-261.
101. Grumbach MM, Conte FA. Disorders of sex differentiation.
In: Wilson J, Foster D, Kronenberg H, eds. Williams Textbook
of Endocrinology. 9th ed. Philadelphia: WB Saunders; 1998:1303-1425.
102. Forest MG, David M, Morel Y. Prenatal diagnosis and treatment
of 21-hydroxylase deficiency.
J Steroid Biochem Mol Biol. 1993;45:75-82.
[PubMed: 8481354]
103. Speiser PW, New MI. Prenatal diagnosis and management of
congenital adrenal hyperplasia.
Clin Perinatol. 1994;21:631-645.
[PubMed: 7982338]
104. Mercado AB, Wilson RC, Cheng KC, Wei JQ, New MI. Prenatal
treatment and diagnosis of congenital adrenal hyperplasia owing
to 21-hydroxylase deficiency.
J Clin Endocrinol Metab. 1995;80:2014-2020.
[PubMed: 7608248]
105. Forest MG, Morel Y, David M. Prenatal treatment of congenital
adrenal hyperplasia.
Trends Endocrinol Metab. 1998;9:284-289.
[PubMed: 18406285]
106. Lajic S, Wedell A, Bui T-H, Ritzen EM, Holst M. Long-term
somatic follow-up of prenatally treated children with congenital
adrenal hyperplasia.
J Clin Endocrinol Metab. 1998;83:3872-3880.
[PubMed: 9814461]
107. New MI, Wilson RC. Steroid disorders in children: congenital
adrenal hyperplasia and apparent mineralocorticoid excess. Proc
Natl Acad Sci U S A. 1999;96(22):12790-12797.
108. White PC. Genetic diseases of steroid metabolism.
Vitam
Horm. 1994;49:131-195.
[PubMed: 7810070]
109. Seckl JR, Miller WL. How safe is long-term prenatal glucocorticoid
treatment?
JAMA. 1997;277:1077-1079.
[PubMed: 9091698]
110. Miller WL. Prenatal treatment of congenital adrenal hyperplasia—a
promising experimental therapy of unproven safety.
Trends
Endocrinol Metab. 1998;9:290-293.
[PubMed: 18406286]
111. Ritzen EM. Prenatal treatment of congenital adrenal hyperplasia:
a commentary.
Trends Endocrinol Metab. 1998;9:293-295.
[PubMed: 18406287]
112. Miller WL.
Dexamethasone treatment of congenital adrenal
hyperplasia—an experimental therapy of unproven safety.
J
Urol. 1999;162:537-540.
[PubMed: 10411085]
113. Pang SY, Clark A. Newborn screening, prenatal diagnosis,
and prenatal treatment of congenital adrenal hyperplasia due to
21-hydroxylase deficiency.
Trends Endocrinol Metab. 1990;1:300-307.
[PubMed: 18411135]
114. Migeon CJ. Comments about the need for prenatal treatment
of congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
J
Clin Endocrinol Metab. 1990;70:836.
[PubMed: 2318944]
115. Pang S, Pollack MS, Marshall RN, Immken LD. Prenatal treatment
of congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
N
Engl J Med. 1990;322:111-115.
[PubMed: 2403652]
116. Seckl JR. Prenatal glucocorticoids and long-term programming. Eur
J Endocrinol. 2004;151:U49-U62.
117. Lajic S, Nordenstrom A, Ritzén EM, Wedell A. Prenatal
treatment of congenital adrenal hyperplasia. Eur J Endocrinol. 2004;151:U63-U69.
118. Sloboda DM, Challis JRG, Moss TJM, Newnham JP. Synthetic
glucocorticoids: antenatal administration and long-term implications.
Curr
Pharm Des. 2005;11:1459-1472.
[PubMed: 15853676]
119. Nimkarn S, New MI. Prenatal diagnosis and treatment of
congenital adrenal hyperplasia.
Hormone Res. 2007;67:53-60.
[PubMed: 17047340]
120. Hirvikoski T, Nordenstrom A, Lindholm T, et al. Cognitive
functions in children at risk for congenital adrenal hyperplasia
treated prenatally with
dexamethasone.
J Clin Endocrinol
Metab. 2007;92:542-548.
[PubMed: 17148562]
121. Hiort O, Holterhus P-M, Werner R, et al. Homozygous disruption
of P450 side-chain cleavage (
CYP11A1) is associated
with prematurity, complete 46,XY sex reversal, and severe adrenal
failure.
J Clin Endocrinol Metab. 2005;90:538-541.
[PubMed: 15507506]
122. Gitau R, Fisk NM, Teixeira JMA, Cameron A, Glover V. Fetal
hypothalamic-pituitary-adrenal stress responses to invasive procedures
are independent of maternal responses.
J Clin Endocrinol
Metab. 2001;86:104.
[PubMed: 11231985]
123. Benediktsson R, Lindsay R, Noble J, Seckl JR, Edwards CRW.
Glucocorticoid exposure in utero: a new model for adult hypertension.
Lancet. 1993;341:339-341.
[PubMed: 8094115]
124. Wolkowitz OM. Prospective controlled studies of the behavioral
and biological effects of exogenous corticosteroids.
Psychoneuroendocrinology. 1994;19:233-255.
[PubMed: 7515507]
125. Trautman PD, Meyer-Bahlburg HFL, Postelnek J, New MI. Effects
of early prenatal
dexamethasone on the cognitive and behavioral
development of young children: results of a pilot study.
Psychoneuroendocrinology. 1995;20:439-449.
[PubMed: 8532827]
126. Seeman TE, McEwen BS, Singer BH, Albert MS, Rowe JW. Increase
in urinary cortisol excretion and memory declines: MacArthur studies
on successful aging.
J Clin Endocrinol Metab. 1997;82:2458-2465.
[PubMed: 9253318]
127. Kalmijn S, Launer LJ, Stolk RP, et al. A prospective study
on cortisol, dehydroepiandrosterone sulfate, and cognitive function
in the elderly.
J Clin Endocrinol Metab. 1998;83:3487-3492.
[PubMed: 9768651]
128. Uno H, Lohmiller L, Thieme C, et al. Brain damage induced
by prenatal exposure to
dexamethasone in fetal rhesus macaques.
I. Hippocampus.
Dev Brain Res. 1990;53:157-167.
[PubMed: 2357788]
129. Yeh TF, Lin YJ, Lin HC, et al. Outcomes at school age after
postnatal
dexamethasone therapy for lung disease of prematurity.
N
Engl J Med. 2004;350:1304-1313.
[PubMed: 15044641]
130. Eugster EA, DiMeglio LA, Wright JC, Freidenberg GR, Seshadri
R, Pescovitz OH. Height outcome in congenital adrenal hyperplasia
caused by 21-hydroxylase deficiency: a meta-analysis.
J
Pediatr. 2001;138:26-32.
[PubMed: 11148508]
131. Gallagher MP, Levine LS, Oberfield SE. A review of the
effects of therapy on growth and bone mineralization in children
with congenital adrenal hyperplasia. Growth Horm IGF Res. 2005;15:S26-S30.
132. Laue L, Merke DP, Jones JV, Barnes KM, Hill S, Cutler GB.
A preliminary study of flutamide, testolactone, and reduced
hydrocortisone
dose in the treatment of congenital adrenal hyperplasia.
J
Clin Endocrinol Metab. 1996;81:3535-3539.
[PubMed: 8855797]
133. Laue L, Kenigsberg D, Pescovitz OH, et al. Treatment of
familial male precocious puberty with spironolactone and testolactone.
N
Engl J Med. 1989;320:496-502.
[PubMed: 2492636]
134. Merke DP, Keil MF, Jones JV, Fields J, Hill S, Cutler GB
Jr. Flutamide, testolactone, and reduced
hydrocortisone dose maintain
normal growth velocity and bone maturation despite elevated androgen
levels in children with congenital adrenal hyperplasia.
J
Clin Endocrinol Metab. 2000;85:1114-1120.
[PubMed: 10720048]
135. Van Wyk JJ, Gunther DF, Ritzén EM, et al. The
use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J
Clin Endocrinol Metab. 1996;81:3180-3189.
136. Van Wyk JJ, Ritzén EM. The role of bilateral adrenalectomy
in the treatment of congenital adrenal hyperplasia. J Clin
Endocrinol Metab. 2003;88:2993-2998.
137. Quintos JBQ, Vogiatzi MG, Harbison MD, New MI. Growth hormone
therapy alone or in combination with gonadotropin-releasing hormone analog
therapy to improve the height deficit in children with congenital
adrenal hyperplasia.
J Clin Endocrinol Metab. 2001;86:1511-1517.
[PubMed: 11297576]
138. Lin-Su K, Vogiatzi MG, Marshall I, et al. Treatment with
growth hormone and luteinizing hormone releasing hormone analog
improves final adult height in children with congenital adrenal
hyperplasia.
J Clin Endocrinol Metab. 2005;90:3318-3325.
[PubMed: 15797962]
139. Flück CE, Tajima T, Pandey AV, et al. Mutant P450
oxidoreductase causes disordered steroidogenesis with and without
Antley-Bixler syndrome.
Nat Genet. 2004;36:228-230.
[PubMed: 21337573]
140. Miller WL. P450 oxidoreductase deficiency: a new disorder
of steroidogenesis with multiple clinical manifestations.
Trends
Endocrinol Metab. 2004;15:311-315.
[PubMed: 15350602]
141. Arlt W, Walker EA, Draper N, et al. Congenital adrenal
hyperplasia caused by mutant P450 oxidoreductase and human androgen
synthesis: analytical study.
Lancet. 2004;363:2128-2135.
[PubMed: 15220035]
142. Fukami M, Horikawa R, Nagai T, et al. Cytochrome P450 oxidoreductase
gene mutations and Antley-Bixler syndrome with abnormal genitalia
and/or impaired steroidogenesis: molecular and clinical
studies in 10 patients.
J Clin Endocrinol Metab. 2005;90:414-426.
[PubMed: 15483095]
143. Huang N, Pandey AV, Agrawal V, et al. Diversity and function
of mutations in P450 oxidoreductase in patients with Antley-Bixler
syndrome and disordered steroidogenesis.
Am J Hum Genet. 2005;76:729-749.
[PubMed: 15793702]
144. Flück CE, Miller WL. P450 oxidoreductase deficiency:
a new form of congenital adrenal hyperplasia.
Curr Opin
Pediatr. 2006;18:435-441.
[PubMed: 21337573]
145. Scott RR, Miller WL. Genetic and clinical features of P450
oxidoreductase deficiency.
Hormone Res. 2008;69:266-275.
[PubMed: 18259105]
146. Shen AL, O’Leary KA, Kasper CB. Association of
multiple developmental defects and embryonic lethality with loss
of microsomal NADPH-cytochrome P450 oxidoreductase.
J Biol
Chem. 2002;277:6536-6541.
[PubMed: 11742006]
147. Otto DM, Henderson CJ, Carrie D, et al. Identification
of novel roles of the P450 system in early embryogenesis: effects
on vasculogenesis and retinoic acid homeostasis.
Mol Cell
Biol. 2003;23:6103-6116.
[PubMed: 12917333]
148. Peterson RE, Imperato-McGinley J, Gautier T, Shackleton
CHL. Male pseudohermaphroditism due to multiple defects in steroid-biosynthetic
microsomal mixed-function oxidases: a new variant of congenital
adrenal hyperplasia.
N Engl J Med. 1985;313:1182-1191.
[PubMed: 2932643]
149. Malunowicz E, Romer TE, Szarras-Czapnik M, Mielniczuk Z,
Gajewka D. Combined deficiency of 17 α-hydroxylase
and 21-hydroxylase in an 8 years-old girl.
Endokrynol Pol. 1987;38:117-124.
[PubMed: 3501367]
150. Augarten A, Pariente C, Gazit E, Chayen R, Goldfarb H,
Sack J. Ambiguous genitalia due to partial activity of cytochromes
P450c17 and P450c21.
J Steroid Biochem Mol Biol. 1992;41:37-41.
[PubMed: 1531179]
151. Lieberman E, Hershkovitz E, Lauber-Biason A, Phillip M,
Zachmann M. Subnormal cortisol response to adrenocorticotropin in
isolated partial 17,20-lyase activity. J Pediatr Endocrinol
Metab. 1997;10:387-390.
152. Adachi M, Tachibana K, Asakura Y, Suwa S, Nishimura G.
A male patient presenting with major clinical symptoms of glucocorticoid
deficiency and skeletal dysplasia, showing a steroid pattern compatible
with 17 α-hydroxylase/17/20 lyase
deficiency, but without obvious
CYP17 gene mutations.
Endocr
J. 1999;46:285-292.
[PubMed: 10460013]
153. Shackleton C, Marcos J, Arlt W, Hauffa BP. Prenatal diagnosis
of P450 oxidoreductase deficiency (ORD): a disorder causing low
pregnancy estriol, maternal and fetal virilization, and the Antley-Bixler
syndrome phenotype. Am J Med Genet. 2004;129A:105-112.
154. Fukami M, Hasegawa T, Horikawa R, et al. Cytochrome P450
oxidoreductase deficiency in three patients initially regarded as
having 21-hydroxylase deficiency and/or aromatase deficiency:
diagnostic value of urine steroid hormone analysis.
Pediatr
Res. 2006;59:276-280.
[PubMed: 16439592]
155. Wilson JD, Auchus RJ, Leihy MW, et al. 5α-androstane-3α,17β-diol
is formed in tammar wallaby pouch young testes by a pathway involving
5α-pregnane-3α,17α-diol-20-one
as a key intermediate.
Endocrinology. 2003;144:575-580.
[PubMed: 12538619]
156. Auchus RJ. The backdoor pathway to dihydrotestosterone.
Trends
Endocrinol Metab. 2004;15:432-438.
[PubMed: 15519890]
157. Zachmann M, Tassinari D, Prader A. Clinical and biochemical
variability in congenital adrenal hyperplasia due to 11β-hydroxylase
deficiency.
J Clin Endocrinol Metab. 1983;56:222-229.
[PubMed: 6296182]
158. Holcombe JH, Keenan BS, Nichols BL, Kirkland RT, Clayton
GW. Neonatal salt loss in the hypertensive form of congenital adrenal
hyperplasia.
Pediatrics. 1980;65:777-781.
[PubMed: 6966049]
159. New MI, White P, Pang S, Dupont B, Speiser PW. The adrenal
hyperplasias. In: Scriver C, Beaudet A, Sly S, Valle D, eds. The
Metabolic Basis of Inherited Disease. 6th ed. New York:
McGraw-Hill; 1989:1881-1917.
160. Sonino N, Levine LS, Vecsci P, New MI. Parallelism of 11-and
18-hydroxylation demonstrated by urinary free hormones in man.
J
Clin Endocrinol Metab. 1980;51:557-560.
[PubMed: 6251104]
161. Rösler A. The natural history of salt-wasting
disorders of adrenal and renal origin.
J Clin Endocrinol
Metab. 1984;59:689-700.
[PubMed: 21337732]
162. Lifton R, Dluhy RG, Powers M, et al. A chimaeric 11β-hydroxylase/aldosterone
synthase gene causes glucocorticoid-remediable aldosteronism and
human hypertension. Nature. 1992;335:262-265.
163. Pascoe L, Curnow K, Slutsker L, et al. Glucocorticoid-suppressible
hyperaldosteronism results from hybrid genes created by unequal
crossover between
CYP11B1 and
CYP11B2.
Proc
Natl Acad Sci U S A. 1992;89:8327-8331.
[PubMed: 1518866]
164. Dluhy RG, Lifton RP. Glucocorticoid-remediable aldosteronism. J
Clin Endocrinol Metab. 1999;84(12):4341-4344.
165.Tomlinson JW, Walker EA, Bujalska IJ, et al. 11 Beta-hydroxysteroid
dehydrogenase type 1: a tissue specific regulator of glucocorticoid
response.
Endocr Rev. 2004;25:831-866.
[PubMed: 15466942]
166. Seckl JR, Morton NM, Chapman KE, Walker BR. Glucocorticoids
and 11β-hydroxysteroid dehydrogenase in adipose
tissue.
Rec Prog Horm Res. 2004;59:359-393.
[PubMed: 14749510]
167. Draper N, Walker EA, Bujalska IJ, et al. Mutations in the
genes encoding 11β-hydroxysteroid dehydrogenase
type 1 and hexose-6-phosphate dehydrogenase interact to cause
cortisone
reductase deficiency.
Nat Genet. 2003;34:434-439.
[PubMed: 12858176]
168. Hewitt KN, Walker EA, Stewart PM. Hexose-6-phosphate dehydrogenase
and redox control of 11β-hydroxysteroid dehydrogenase
type 1 activity.
Endocrinology. 2005;146:2539-2543.
[PubMed: 15774558]
169. Dave-Sharma S, Wilson RC, Harbison MD, et al. Examination
of genotype and phenotype relationships in 14 patients with apparent
mineralocorticoid excess.
J Clin Endocrinol Metab. 1998;83:2244-2254.
[PubMed: 9661590]
170. Wilson RC, Nimkarn S, New MI. Apparent mineralocorticoid
excess.
Trends Endocrinol Metab. 2001;12:104-111.
[PubMed: 11306334]
171. Quinkler M, Stewart PM. Hypertension and the cortisol-cortisone
shuttle.
J Clin Endocrinol Metab. 2003;88:2384-2392.
[PubMed: 12788832]
172. Palermo M, Quinkler M, Stewart PM. Apparent mineralocorticoid
excess syndrome: an overview.
Arq Bras Endocrinol Metab. 2004;48:687-696.
[PubMed: 15761540]