1. Harvey N, Earl S, Cooper C. Epidemiology of osteoporotic
fractures. In Favus MJ, ed. Primer on the Metabolic Bone
Diseases and Disorders of Mineral Metabolism, 6th ed. Washington,
DC: American Society for Bone and Mineral Research; 2006:244-248.
2. Bachrach LK. Osteoporosis and measurement of bone mass in
children and adolescents.
Endocrinol Metab NA. 2005;34:521-535.
[PubMed: 16085157]
3. Simmons J, Zeitler P, Steelman J. Advances in the diagnosis
and treatment of osteoporosis.
Adv Pediatr. 2007;
54:85-114.
[PubMed: 17918468]
4. Kalkwarf HJ, Zemel BS, Gilsanz V, et al. The bone mineral
density in childhood study: bone mineral content and density according
to age, sex, and race.
J Clin Endocrinol Metab. 2007;92:2087-2099.
[PubMed: 17311856]
6. Pettifor JM. Nutritional and drug-induced rickets and osteomalacia.
In Favus MJ, ed. Primer on the Metabolic Bone Diseases and
Disorders of Mineral Metabolism, 6th ed. Washington, DC:
American Society for Bone and Mineral Research; 2006:330-338.
7 Pettifor JM. Rickets and vitamin D deficiency in children
and adolescents. Endocrinol Metab Clin NA. 2005;34:537-553.
8. Joiner TA, Foster C, Shope T. The many faces of vitamin D
deficiency rickets.
Pediatr Rev. 2000; 21:296-302.
[PubMed: 10970451]
9. Rauch F, Schoenau E. Skeletal development in premature infants:
a review of bone physiology beyond nutritional aspects. Arch
Dis Child Fetal Neonatal Ed. 2002;86:F82-F85.
10. Miller ME. The bone disease of preterm birth: a biomechanical
perspective.
Pediatr Res. 2003;53:10-15.
[PubMed: 12508075]
11. Cakir M, Mungan I, Karahan C, et al. Necrotizing enterocolitis
increases the bone resorption in premature infants.
Early
Hum Dev. 2006;82:405-409.
[PubMed: 16343822]
12. Aladangady N, Coen PG, White MP, et al. Urinary excretion
of calcium and phosphate in preterm infants.
Pediatr Nephrol. 2004;19:1225-1231.
[PubMed: 15349762]
13. Aly H, Moustafa MF, Amer HA, et al. Gestational age, sex,
and maternal parity correlate with bone turnover in premature infants.
Pediatr
Res. 2005;57:708-711.
[PubMed: 15774820]
14. Weiler HA, Yuen CK, Seshia MM. Growth and bone mineralization
of young adults weighing less than 1500 grams at birth.
Early
Hum Dev. 2002;67:101-1012.
[PubMed: 11893441]
15. Welch TR, Bergstrom WH, Tsang RC. Vitamin D-deficient rickets:
The reemergence of a once-conquered disease.
J Pediatr. 2000;137:143-145.
[PubMed: 10931400]
16. Gordon CM, DePeter KC, Feldman HA, et al. Prevalence of
vitamin D deficiency among healthy adolescents.
Arch Pediatr
Adolesc Med. 2004;158:531-537.
[PubMed: 15184215]
17. Das G, Crocombe S, McGrath M, et al. Hypovitaminosis D among
healthy adolescent girls attending an inner school.
Arch
Dis Child. 2006;91:569-572.
[PubMed: 16174640]
18. Ziegler EE, Hollis BW, Nelson SE, Jeter JM. Vitamin D deficiency
in breast fed infants in Iowa.
Pediatrics. 2006;118:603-610.
[PubMed: 16882813]
19. Misra M, Pacaud D, Petryk A, et al. Vitamin D deficiency
in children and its management: review of current knowledge and
recommendations.
Pediatrics. 2008;122:398-417.
[PubMed: 18676559]
20. Cheng JB, Levine MA, Bell NH, et al. Genetic evidence that
human CYPR1 enzyme is a key vitamin D 25-hydroxylase.
Proc
Natl Acad Sci. 2004;101:7711-7715.
[PubMed: 15128933]
21. Demay MB. Rickets caused by impaired vitamin D activation
and hormone resistance: pseudovitamin D deficiency rickets and hereditary
vitamin D-resistant rickets. In Favus MJ, ed. Primer on
the Metabolic Bone Diseases and Disorders of Mineral Metabolism,
6th ed. Washington, DC: American Society for Bone and Mineral Research;
2006:338-341.
22. Nicolaidou P, Tsitsika A, Papadimitriou A, et al. Hereditary
vitamin D-resistant rickets in Greek children: Genotype, phenotype,
and long-term response to treatment.
J Pediatr Endocrinol
Metab. 2007;20:425-430.
[PubMed: 17451081]
23. DeLucia MC, Mitnick ME, Carpenter TO. Nutritional rickets
with normal circulating 25-hydroxyvitamin D: a call for reexamining
the role of dietary calcium intake in North American infants.
J
Clin Endocrinol Metab. 2003;88:3539-3545.
[PubMed: 12915633]
24. Novais E, Stevens PM. Hypophosphatemic rickets: the role
of hemiepiphysiodesis.
J Pediatr Orthop. 2006;26:238-244.
[PubMed: 16557142]
25. Makitie O, Doria A, Kooh SW, et al. Early treatment improves
growth and biochemical and radiographic outcome in X-linked hypophosphatemic
rickets.
J Clin Endocrinol Metab. 2003;88:3591-3597.
[PubMed: 12915641]
26. Takeda E, Yamamoto H, Nashiki K, et al. Inorganic phosphate
homeostasis and the role of dietary phosphorus.
J Cell Mol
Med. 2004;8:191-200.
[PubMed: 15256067]
27. Shulman DI, Hahn G, Benator R, et al. Tumor-induced rickets:
Usefulness of MR gradient echo recall imaging for tumor localization.
J
Pediatr. 2004;144:381-385.
[PubMed: 15001949]
28. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets
and osteomalacia and identifies a role for osteocytes in mineral
metabolism.
Nat Genet. 2006;38:1310-1315.
[PubMed: 17033621]
29. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, et al. DMP1
mutations in autosomal recessive hypophosphatemia implicate a bone
matrix protein in the regulation of phosphate homeostasis.
Nat
Genet. 2006;38:1248-1250.
[PubMed: 17033625]
30. Ward LM. Renal phosphate-wasting disorders in childhood.
Pediatr
Endocrinol Rev. 20052:342-350.
[PubMed: 16456503]
31. Tebben PJ, Thomas LF, Kumar R. Fanconi syndrome and renal
tubular acidosis. In Favus MJ, ed. Primer on the Metabolic
Bone Diseases and Disorders of Mineral Metabolism, 6th
ed. Washington, DC: American Society for Bone and Mineral Research;
2006:354-358.
32. Whyte MP. Hypophosphatasia. In Favus MJ, ed. Primer
on the Metabolic Bone Diseases and Disorders of Mineral Metabolism,
6th ed. Washington, DC: American Society for Bone and Mineral Research;
2006:351-353.
33. Tolaymat N, Nunes de Melo MC. Benign transient hyperphosphatasemia
of infancy and childhood.
South Med J. 2000;93:1162-1164.
[PubMed: 11142449]
34. Cundy T, Davidson J, Rutland MD, et al. Recombinant osteoprotegerin
for juvenile Paget’s disease.
N Engl J Med. 2005;353:918-923.
[PubMed: 16135836]
35. Hughes AE, Ralston SH, Marken J, et al. Mutations in TNFRSF11A,
affecting the signal peptide of RANK, cause familial expansile osteolysis.
Nat
Genet. 2000;24:45-48.
[PubMed: 10615125]
36. Martin KJ, Al-Aly Z, Gonzalez EA. Renal osteodystrophy.
In Favus MJ, ed. Primer on the Metabolic Bone Diseases and
Disorders of Mineral Metabolism, 6th ed. Washington, DC:
American Society for Bone and Mineral Research; 2006:359-366.
37. Golden NH. Osteoporosis prevention. A pediatric challenge.
Arch
Pediatr Adolesc Med. 2000;154:542-543.
[PubMed: 10850498]
38. Wyshak G. Teenaged girls, carbonated beverage consumption,
and bone fractures. Arch Pediatr Adolesc Med. 12000;54:610-613.
39. Weiler HA, Janzen L, Green K, et al. Percent body fat and
bone mass in healthy Canadian females 10 to 19 years of age.
Bone. 2000;27:203-207.
[PubMed: 10913912]
40. Janz KF, Burns TL, Torner JC, et al. Physical activity and
bone measures in young children: The Iowa bone development study.
Pediatrics. 2001;107:1387-1393.
[PubMed: 11389262]
41. Stone M, Briody J, Kohn MR, et al. Bone changes in adolescent
girls with anorexia nervosa.
J Adolesc Hlth. 2006;39:835-841.
[PubMed: 17116513]
42. Misra M, Klibanski A. Anorexia nervosa and osteoporosis.
Rev
Endocrinol Metab Disord. 2006;7:91-99.
[PubMed: 16972186]
43. Lawson EA, Klibanski A. Endocrine abnormalities in anorexia
nervosa.
Nat Clin Pract Endocrinol Metab. 2008;4:407-414.
[PubMed: 18542109]
44. DiVasta AD, Gordon CM. Bone health in adolescents.
Adolesc
Med. 2006;17:639-652.
[PubMed: 17030283]
45. Gordon NH, Lanzkowsky L, Schebendach J, et al. The effect
of estrogen-progestin treatment on bone mineral density in anorexia
nervosa. J Pediatr Adolesc Gynecol. 2002;15:135-143.
46. Zacharin M. Current advances in bone health of disabled
children. Curr Opin Pediatr. 2002;16:545-551,2004.
47. King W, Levin R, Schmidt R, et al. Prevalence of reduced
bone mass in children and adults with spastic quadriplegia.
Dev
Med Child Neurol. 2003;45:12-16.
[PubMed: 12549750]
48. Henderson JK, Kairalla JA. Barrington JW, et al. Longitudinal
changes in bone density in children and adolescents with moderate
to severe cerebral palsy.
J Pediatr. 2005;146:769-775.
[PubMed: 15973316]
49. Henderson RC, Lark RK, Kecskemethy HH, et al. Bisphosphonates
to treat osteopenia in children with quadriplegic cerebral palsy:
a randomized, placebo-controlled clinical trial.
J Pediatr. 2002;141:644-651.
[PubMed: 12410192]
50. Caulton JM, Ward KA, Alsop CW, et al. A randomised controlled
trial of standing programme on bone mineral density in non-ambulant
children with cerebral palsy.
Arch Dis Child. 2004;89:131-135.
[PubMed: 14736627]
51. Ali O, Shim M, Fowler E, et al. Growth hormone therapy improves
bone mineral density in children with cerebral palsy: a preliminary
pilot study.
J Clin Endocrinol Metab. 2007;92:932-937.
[PubMed: 17179200]
52. Moreira-Andres MN, Canizo FJ, de la Cruz FJ, et al. Evaluation
of bone mineral content in prepubertal children with constitutional
delay of growth.
J Pediatr Endocrinol Metab. 2000;13:591-597.
[PubMed: 10905382]
53. Sambrook PN. Glucocorticoid-induced osteoporosis. In Favus
MJ, ed. Primer on the Metabolic Bone Diseases and Disorders
of Mineral Metabolism, 6th ed. Washington, DC: American
Society for Bone and Mineral Research; 2006:296-302.
54. Noguera A, Ros JB, Pavia C, et al. Bisphosphonates, a new
treatment for glucocorticoid-induced osteoporosis in children.
J
Pediatr Endocrinol Metab. 2003;16:529-536.
[PubMed: 12793604]
55. Lucidarme N, Ruiz JC, Czernichow P, Leger J. Reduced bone
mineral density at diagnosis and bone mineral recovery during treatment
in children with Graves disease.
J Pediatr. 2000;137:56-62.
[PubMed: 10891822]
56. Moyer Mileur LJ, Dixon SB, Quick JL, et al. Bone mineral
acquisition in adolescents with type 1 diabetes. J Pediatr. 2004;145:662-669.
57. Root AW, Diamond FB Jr. Disorders of bone mineral metabolism
in the newborn, infant, child, and adolescent. In Sperling MA, ed. Pediatric
Endocrinology, 3rd ed, Philadelphia, PA: Saunders/Elsevier;
2008:686-769.
58. Atkinson SA, Halton JM, Bradley C, et al. Bone and mineral
abnormalities in childhood acute lymphoblastic leukemia: Influence
of disease, drugs and nutrition. Int J Cancer. 1998;11(suppl):35-39.
59. Rauch F, Bishop N. Juvenile osteoporosis. In Favus MJ, ed. Primer
on the Metabolic Bone Diseases and Disorders of Mineral Metabolism,
6th ed. Washington, DC: American Society for Bone and Mineral Research;
2006:293-296.
60. Hartikka H, Makitie O, Mannikko M, et al. Heterozygous mutations
in the LDL receptor-related protein 5 (LRP5) gene are associated
with primary osteoporosis in children.
J Bone Miner Res. 2005;20:783-789.
[PubMed: 15824851]
61. Balesman W, Van Hul W. Minireview: The genetics of low density
lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology. 2007;148:2622-2629.
62. Ai M, Heeger S, Barteks CF, et al. Clinical and molecular
findings in osteoporosis-pseudoglioma syndrome.
Am J Hum
Genet. 2005;77:741-753.
[PubMed: 16252235]
63. Rauch F, Glorieux FH. Osteogenesis imperfecta.
Lancet. 2004;363:1377-1385.
[PubMed: 15110498]
64. Marini JC. Osteogenesis imperfecta. In Favus MJ, ed. Primer
on the Metabolic Bone Diseases and Disorders of Mineral Metabolism,
6th ed. Washington, DC: American Society for Bone and Mineral Research;
2006:418-421.
65. Barnes AM, Chang W, Morello R, et al. Deficiency of cartilage-associated
protein in lethal osteogenesis imperfecta.
N Engl J Med. 2006;355:2757-2764.
[PubMed: 17192541]
66. Cabral WA, Chang W, Barnes AM, et al. Prolyl 3-hydroxylase
1 deficiency causes a recessive metabolic bone disorder resembling
lethal/severe osteogenesis imperfecta.
Nat Genet. 2007;39:359-365.
[PubMed: 17277775]
67. Rauch F, Glorieux FH. Bisphosphonate treatment in osteogenesis
imperfecta: which drug, for whom, for how long? Ann Med. 2005;37:925-302.
68. Plotkin H. Growth in osteogenesis imperfecta. Growth
Genet Horm. 2007;23:17-23.
69. Rauch F, Travers R, Glorieux FH. Pamidronate in children
with osteogenesis imperfecta: histomorphometric effects of long-term
therapy.
J Clin Endocrinol Metab. 2006;91:511-516.
[PubMed: 16291701]
70. Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children
and adolescents with osteogenesis imperfecta: effect of treatment
discontinuation.
J Clin Endocrinol Metab. 2006;91:1268-1274.
[PubMed: 16434452]
71. Shaw NJ, Bishop NJ. Bisphosphonate treatment of bone disease.
Arch
Dis Child. 2005;90:494-499.
[PubMed: 15851432]
72. Speiser PW, Clarkson CL, Eugster EA, et al. Bisphosphonate
treatment of pediatric bone disease.
Pediatr Endocrinol
Rev. 2005;3:87-96.
[PubMed: 16361982]
73. Whyte MP, Wenkert D, Clements KL, et al. Bisphosphonate-induced
osteopetrosis.
N Engl J Med. 2003;349:457-463.
[PubMed: 12890844]
74. Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone
and teriparatide for the treatment of osteoporosis: a review of
the evidence and suggested guidelines for its use.
Endocr
Rev. 2005;26:688-703.
[PubMed: 15769903]
75. Whyte MP. Sclerosing bone disorders. In Favus MJ, ed. Primer
on the Metabolic Bone Diseases and Disorders of Mineral Metabolism,
6th ed. Washington, DC: American Society for Bone and Mineral Research;
2006:398-414.
76. Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis.
N
Engl J Med. 2004;351:2839-2849.
[PubMed: 15625335]
77. Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride
channel leads to osteopetrosis in mice and man.
Cell. 2001;104:205-215.
[PubMed: 11207362]
78. Ramirez A, Faupel J, Goebel I, et al. Identification of
a novel mutation in the coding region of the grey-lethal gene OSTM1
in human malignant infantile osteopetrosis.
Hum Mutat. 2004;23:471-476.
[PubMed: 15108279]
79. Susani L, Pangrazio A, Sobachhi A, et al. TCIRG1-dependent
recessive osteopetrosis: mutation analysis, functional identification
of the splicing defects, and in vitro rescue by U1 snRNA.
Hum
Mutat. 2004;24:225-235.
[PubMed: 15300850]
80. Waguespack SG, Hui SL, DiMeglio LA, Econs MJ. Autosomal
dominant osteopetrosis: Clinical severity and natural history of
94 subjects with a chloride channel 7 gene mutation.
J Clin
Endocrinol Metab. 2007;92:771-778.
[PubMed: 17164308]
81. Fujita Y, Nakata K, Yasui N, et al. Novel mutations of the
cathepsin K gene in patients with pycnodysostosis and their characterization.
J
Clin Endocrinol Metab. 2000;85:425-431.
[PubMed: 10634420]
82. Doffinger S, Smahi A, Bessia C, et al. X-linked anhidrotic
ectodermal dysplasia with immunodeficiency is caused by impaired
NF-B signaling.
Nat Genet. 2001;27:277-285.
[PubMed: 11242109]
83. Dupuis-Girod S, Corradinin N, Hadj-Rabia S, et al. Osteopetrosis,
lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency
in a boy and incontinentia pigmenti in his mother. Pediatrics. 2002;109:1-6.
84. Boyden LM, Mao J, Belsky J, et al. High bone density due
to a mutation in LDL-receptor-related protein 5.
N Engl
J Med. 2002;346:1513-1521.
[PubMed: 12015390]
85. Van Wesenbeeck L, Cleiren E, Gram J, et al. Six novel missense
mutations in the LDL receptor-related protein 5 (LRP5) gene in different
conditions with increased bone density. Am J Hum Genet. 2003;72:763-771.
86. Janssens K, Vanhoenacker F, Bonduelle M, et al. Camurati-Engelmann
disease: review of the clinical, radiological, and molecular data
of 24 families and implications for diagnosis and treatment. J
Med Genet. 2007;43:1-11.
87. Whyte MP. Extracellular (ectopic) calcification and ossification.
In Favus MJ, ed. Primer on the Metabolic Bone Diseases and
Disorders of Mineral Metabolism, 6th ed. Washington, DC:
American Society for Bone and Mineral Research; 2006:436-437.
88. Whyte MP. Tumoral calcinosis. In Favus MJ, ed. Primer
on the Metabolic Bone Diseases and Disorders of Mineral Metabolism,
6th ed. Washington, DC: American Society for Bone and Mineral Research;
2006:437-439.
89. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An
FGF23 missense mutation causes familial tumoral calcinosis with
hyperphosphatemia.
Hum Molec Genet. 2005;14:385-390.
[PubMed: 15590700]
90. Kato K, Jeanneau C, Tarp MA, et al. Polypeptide GalNAc-transferase
T3 and familial tumoral calcinosis. Secretion of fibroblast growth
factor 23 requires
O-glycosylation.
J Biol
Chem. 2006;281:18370-18377.
[PubMed: 16638743]
91. Garringer HJ, Fisher C, Larsson TE, et al. The role of mutant
UDP-
N-acetyl-alpha-D-galactosamine-polypeptide
N-acetylgalactosaminyltransferase
3 in regulating serum intact fibroblast growth factor 23 and matrix
extracellular phosphoglycoprotein in heritable tumoral. calcinosis.
J
Clin Endocrinol Metab. 2006;91:4037-4041.
[PubMed: 16868048]
92. Ichikawa S, Imel EA, Sorensen AH, et al. Tumoral calcinosis
presenting with eyelid calcifications due to novel missense mutations
in the glycosyltransferase domain of the
GALNT3 gene.
J
Clin Endocrinol Metab. 2006;91:4472-4475.
[PubMed: 16940445]
93. Shore EM, Xu M, Feldman GJ, et al. A recurrent mutation
in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia
ossificans progressiva.
Nature Genet. 2006;38:525-527.
[PubMed: 16642017]
94. Kaplan FS, Xu M, Glaser DL, et al. Early diagnosis of fibrodysplasia
ossificans progressiva. Pediatrics. 2008;121:e1295-e1300.
(DOI:10.1542/peds.2007-1980)
95. Chan I, Hamada T, Hardman C, et al. Progressive osseous
heteroplasia resulting from a new mutation in the
GNAS1 gene.
Clin
Exper Dermatol. 2004;29:77-80.
[PubMed: 14723729]
96. Holick MF. Resurrection of vitamin D deficiency and rickets.
J
Clin Invest. 2006;116:2062-2072.
[PubMed: 16886050]
97. Zemel BS, Leonard MB, Kalkwarf HJ, et al. Reference data
for whole body, lumbar spine and proximal femur for American children
relative to age, gender and body size. J Bone Miner. Res. 2004;19(suppl
1):S231.