Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!


Respiratory distress occurs frequently in newborns and can be a presenting symptom of both benign and life-threatening diseases. Failure of any of a complex series of cardiovascular and pulmonary modifications that help the neonate transition to extrauterine life can manifest as neonatal respiratory distress. Clinical features of a newborn in respiratory distress include tachypnea of more than 60 breaths per minute; cyanosis; expiratory grunting; intercostal, subcostal, or supraclavicular retractions; and nasal flaring. Although the causes of respiratory distress are numerous, this chapter focuses on a relatively common cause of respiratory distress known as transient tachypnea of the newborn (TTN) and the identification of a more serious condition, persistent pulmonary hypertension of the newborn (PPHN).


TTN is a benign, self-limited disorder that occurs during the transition from uterine to extrauterine life and results from the delayed clearance of excess lung fluid. TTN was first described in 1966 when it was observed that a subset of newborns exhibited respiratory distress, consisting primarily of tachypnea, at or shortly after birth. Although the tachypnea persisted for several days, it subsequently resolved completely without sequelae.1

Inadequate or delayed clearance of fetal lung fluid results in TTN. This fluid fills the alveolar space and then moves into the extra-alveolar space subsequently surrounding the perivascular tissue and lung fissures. It remains there until resorption is completed by the lymphatic or vascular circulation. The initiation of gas exchange in the lungs requires onset of breathing, increased pulmonary blood, and decreased systemic vascular resistance and air displacing fetal fluids. Some have suggested that TTN is associated with a relative surfactant dysfunction,2 but other studies found no association between TTN and surfactant mutation.3

Delivery via elective cesarean section increases the risk for TTN. Although the physiologic mechanisms are not understood, this risk is significantly decreased if the mother undergoes a trial of labor.4 Additional risk factors for TTN include male sex, late prematurity (34 to 37 weeks gestational age) and macrosomia.5 Although the mechanism is obscure, being born to an asthmatic mother appears to be a risk factor for TTN. Infants born to women with gestational diabetes also appear to be at increased risk. This observation may be related to a corresponding increase in the rate of cesarean sections among these mothers.

PPHN commonly occurs in full-term and near-term (late preterm) infants (>34 weeks) and has an estimated incidence of 0.2% of live births.6 After birth, PPHN occurs when there is an insufficient or delayed decrease in pulmonary vascular resistance, which results in right-to-left shunting of blood through the ductus arteriosus or foramen ovale and severe hypoxemia. PPHN typically arises in the setting of a structurally normal heart, either with or without associated pulmonary disease. Perinatal risk factors that increase pulmonary vasoconstriction include hypoxia, acidosis, alveolar atelectasis, sepsis, direct lung injury, hypoglycemia, and cold stress.7,...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.