TY - CHAP M1 - Book, Section TI - Disorders of Ketolysis A1 - Vockley, Jerry A2 - Kline, Mark W. PY - 2018 T2 - Rudolph's Pediatrics, 23e AB - Ketolysis involves esterification of acetylacetate (AcAc) to AcAc-coenzyme A (CoA) by succinyl-CoA:3-oxoacid transferase (SCOT, OXCT1 gene) and hydrolysis of AcAcCoA by mitochondrial acetoacetyl-CoA thiolase (T2, ACAT1 gene) to form acetyl-CoA. Inherited disorders of ketolysis involve these 2 enzymes and cause persistent or episodic ketoacidosis. If SCOT is entirely lacking, ketolysis is completely blocked, but if functional T2 is completely absent, some ketolysis is still possible, likely due to the presence of another mitochondrial enzyme, medium chain 3-ketoacyl-CoA thiolase, that has some activity for hydrolyzing AcAcCoA. This latter enzyme may explain in part why permanent ketosis is often observed in SCOT deficiency but not in T2 deficiency. Ketone body production is regulated by the hormones glucagon and catecholamines, which induce free fatty acid (FFA) mobilization from adipose tissue, fatty acid oxidation, and ketogenesis in the liver, while insulin suppresses these steps. Ketogenic stresses including fasting, prolonged exertion, febrile illnesses, and vomiting and diarrhea, leading to both FFA oxidation and ketone body synthesis. The enzymes of ketogenesis (see Chapter 146); hydroxymethylglutaryl-CoA synthase and lyase, generate AcAc, which is then reduced by mitochondrial D-β-hydroxybutyrate (D-βOHB)-dehydrogenase (BDH1) in the liver to D-βOHB. Ketone bodies then circulate to peripheral tissues, where BDH1 regenerates AcAc, allowing SCOT and T2 to generate acetyl-CoA in order to maintain cellular energy production via the tricarboxylic acid (TCA) cycle and spare glucose utilization. SN - PB - McGraw-Hill Education CY - New York, NY Y2 - 2024/04/19 UR - accesspediatrics.mhmedical.com/content.aspx?aid=1182928992 ER -